3,565 research outputs found

    Leading Sheep 2008-2011 WP 261 Final Report.

    Get PDF
    The second phase of Leading Sheep (2008-2011) aimed to increase the profitability and viability of Queensland wool producers through innovative approaches to extension and technology adoption. It is a partnership between the Department of Employment, Economic Development & Innovation (DEEDI, formerly DPI&F), Australian Wool Innovation (AWI), and AgForce. Leading Sheep supported a regionally specific program model based on four areas of Queensland: South-East (Traprock), Southern Inland (Box/Sandalwood), South-West (Mulga) and, North/Central-West (Mitchell Grass). Each of these regions had a dedicated coordinator, DEEDI extension officer and a regional committee to identify and prioritise issues and then plan, conduct and evaluate events based on these issues

    Reconstructing a model of quintessential inflation

    Full text link
    We present an explicit cosmological model where inflation and dark energy both could arise from the dynamics of the same scalar field. We present our discussion in the framework where the inflaton field ϕ\phi attains a nearly constant velocity mP1dϕ/dNα+βexp(βN)m_P^{-1} |d\phi/dN|\equiv \alpha+\beta \exp(\beta N) (where NlnaN\equiv \ln a is the e-folding time) during inflation. We show that the model with α<0.25|\alpha|<0.25 and β<0\beta<0 can easily satisfy inflationary constraints, including the spectral index of scalar fluctuations (ns=0.96±0.013n_s=0.96\pm 0.013), tensor-to-scalar ratio (r<0.28r<0.28) and also the bound imposed on Ωϕ\Omega_\phi during the nucleosynthesis epoch (Ωϕ(1MeV)<0.1\Omega_\phi (1 {\rm MeV})<0.1). In our construction, the scalar field potential always scales proportionally to the square of the Hubble expansion rate. One may thereby account for the two vastly different energy scales associated with the Hubble parameters at early and late epochs. The inflaton energy could also produce an observationally significant effective dark energy at a late epoch without violating local gravity tests.Comment: 18 pages, 7 figures; added refs, published versio

    Comparing Brane Inflation to WMAP

    Full text link
    We compare the simplest realistic brane inflationary model to recent cosmological data, including WMAP 3-year cosmic microwave background (CMB) results, Sloan Digital Sky Survey luminous red galaxies (SDSS LRG) power spectrum data and Supernovae Legacy Survey (SNLS) Type 1a supernovae distance measures. Here, the inflaton is simply the position of a D3D3-brane which is moving towards a Dˉ3\bar{D}3-brane sitting at the bottom of a throat (a warped, deformed conifold) in the flux compactified bulk in Type IIB string theory. The analysis includes both the usual slow-roll scenario and the Dirac-Born-Infeld scenario of slow but relativistic rolling. Requiring that the throat is inside the bulk greatly restricts the allowed parameter space. We discuss possible scenarios in which large tensor mode and/or non-Gaussianity may emerge. Here, the properties of a large tensor mode deviate from that in the usual slow-roll scenario, providing a possible stringy signature. Overall, within the brane inflationary scenario, the cosmological data is providing information about the properties of the compactification of the extra dimensions.Comment: 45 pages 11 figure

    Leading Sheep 2008-2011 WP 261 Final Report.

    Get PDF
    The second phase of Leading Sheep (2008-2011) aimed to increase the profitability and viability of Queensland wool producers through innovative approaches to extension and technology adoption. It is a partnership between the Department of Employment, Economic Development & Innovation (DEEDI, formerly DPI&F), Australian Wool Innovation (AWI), and AgForce. Leading Sheep supported a regionally specific program model based on four areas of Queensland: South-East (Traprock), Southern Inland (Box/Sandalwood), South-West (Mulga) and, North/Central-West (Mitchell Grass). Each of these regions had a dedicated coordinator, DEEDI extension officer and a regional committee to identify and prioritise issues and then plan, conduct and evaluate events based on these issues

    Chasing Brane Inflation in String-Theory

    Full text link
    We investigate the embedding of brane anti-brane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton ϕ\phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces, induced by moduli stabilization and acting on the D3-brane, might cancel by fine-tuning such as to leave us with the original Coulomb attraction of the anti D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of ϕ\phi around an inflection point but not globally. For the most part of its motion the inflaton then feels a steep, non slow-roll potential. We study the inflationary dynamics induced by this potential.Comment: 34 pages, 4 figures. Final version published in JCA

    On the Slow Roll Expansion for Brane Inflation

    Get PDF
    One possibility for identifying the inflaton in the framework of string theory is that it is a DD-brane modulus. This option involves a specific, non-canonical form of the kinetic energy -- the Dirac-Born-Infeld action. This note investigates the applicability of the slow roll approximation in inflationary models of this type. To this end the slow roll expansion of Liddle, Parsons and Barrow is derived for the case of the DBI action. The resulting slow roll conditions augment the standard ones valid in the case of canonical kinetic terms. It is also shown that in DBI models inflation does not require that the potential dominate the energy density.Comment: References adde
    corecore