2 research outputs found

    Acute Effects Of 24-h Sleep Deprivation On Salivary Cortisol And Testosterone Concentrations And Testosterone To Cortisol Ratio Following Supplementation With Caffeine Or Placebo

    Get PDF
    International Journal of Exercise Science 10(1): 108-120, 2017. Caffeine has become a popular ergogenic aid amongst athletes and usage to improve athletic performance has been well documented. The effect of caffeine on anabolic and catabolic hormones in a sleep-deprived state has had little investigation to date. The purpose of the current study was to investigate the potential of caffeine to offset the effects, if any, of short-term sleep deprivation and exercise on an athlete’s testosterone and cortisol concentrations via salivary technique. Eleven competitive male athletes volunteered to be part of this prospective double-blinded study. Three test days were scheduled for each athlete; one non-sleep deprived, one sleep-deprived with caffeine supplementation (6 mg.kg-1) and one sleep-deprived with placebo ingestion. Sleep deprivation was defined as 24-h without sleep. Each test day was composed of 2 aerobic components: a modified Hoff test and a Yo-Yo test. Testosterone and cortisol concentrations were measured via salivary analysis at 4 different time-points; T1 to T4, representing baseline, and pre- and post-aerobic components, respectively. Overall no significant differences were detected comparing the different sleep states for testosterone or cortisol concentrations. A trend existed whereby the sleep-deprived with caffeine ingestion state mirrored the non-sleep deprived state for cortisol concentration. Therefore, caffeine supplementation may have potential benefits for athletes during short-term aerobic exercise when sleep-deprived. An increase in mean testosterone concentration post-aerobic exercise was only observed in the sleep-deprived with caffeine ingestion state

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore