5 research outputs found

    Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system

    No full text
    Objective: Common data elements (CDEs) are standardized questions and answer choices that allow aggregation, analysis, and comparison of observations from multiple sources. Clinical CDEs are foundational for learning health care systems, a data-driven approach to health care focused on continuous improvement of outcomes. We aimed to create clinical CDEs for pediatric epilepsy. Methods: A multiple stakeholder group (clinicians, researchers, parents, caregivers, advocates, and electronic health record [EHR] vendors) developed clinical CDEs for routine care of children with epilepsy. Initial drafts drew from clinical epilepsy note templates, CDEs created for clinical research, items in existing registries, consensus documents and guidelines, quality metrics, and outcomes needed for demonstration projects. The CDEs were refined through discussion and field testing. We describe the development process, rationale for CDE selection, findings from piloting, and the CDEs themselves. We also describe early implementation, including experience with EHR systems and compatibility with the International League Against Epilepsy classification of seizure types. Results: Common data elements were drafted in August 2017 and finalized in January 2020. Prioritized outcomes included seizure control, seizure freedom, American Academy of Neurology quality measures, presence of common comorbidities, and quality of life. The CDEs were piloted at 224 visits at 10 centers. The final CDEs included 36 questions in nine sections (number of questions): diagnosis (1), seizure frequency (9), quality of life (2), epilepsy history (6), etiology (8), comorbidities (2), treatment (2), process measures (5), and longitudinal history notes (1). Seizures are categorized as generalized tonic-clonic (regardless of onset), motor, nonmotor, and epileptic spasms. Focality is collected as epilepsy type rather than seizure type. Seizure frequency is measured in nine levels (all used during piloting). The CDEs were implemented in three vendor systems. Early clinical adoption included 1294 encounters at one center. Significance: We created, piloted, refined, finalized, and implemented a novel set of clinical CDEs for pediatric epilepsy

    Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system.

    No full text
    ObjectiveCommon data elements (CDEs) are standardized questions and answer choices that allow aggregation, analysis, and comparison of observations from multiple sources. Clinical CDEs are foundational for learning health care systems, a data‐driven approach to health care focused on continuous improvement of outcomes. We aimed to create clinical CDEs for pediatric epilepsy.MethodsA multiple stakeholder group (clinicians, researchers, parents, caregivers, advocates, and electronic health record [EHR] vendors) developed clinical CDEs for routine care of children with epilepsy. Initial drafts drew from clinical epilepsy note templates, CDEs created for clinical research, items in existing registries, consensus documents and guidelines, quality metrics, and outcomes needed for demonstration projects. The CDEs were refined through discussion and field testing. We describe the development process, rationale for CDE selection, findings from piloting, and the CDEs themselves. We also describe early implementation, including experience with EHR systems and compatibility with the International League Against Epilepsy classification of seizure types.ResultsCommon data elements were drafted in August 2017 and finalized in January 2020. Prioritized outcomes included seizure control, seizure freedom, American Academy of Neurology quality measures, presence of common comorbidities, and quality of life. The CDEs were piloted at 224 visits at 10 centers. The final CDEs included 36 questions in nine sections (number of questions): diagnosis (1), seizure frequency (9), quality of life (2), epilepsy history (6), etiology (8), comorbidities (2), treatment (2), process measures (5), and longitudinal history notes (1). Seizures are categorized as generalized tonic‐clonic (regardless of onset), motor, nonmotor, and epileptic spasms. Focality is collected as epilepsy type rather than seizure type. Seizure frequency is measured in nine levels (all used during piloting). The CDEs were implemented in three vendor systems. Early clinical adoption included 1294 encounters at one center.SignificanceWe created, piloted, refined, finalized, and implemented a novel set of clinical CDEs for pediatric epilepsy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166156/1/epi16733.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166156/2/epi16733_am.pd

    Efficacy and Safety of the RTS,S/AS01 Malaria Vaccine during 18 Months after Vaccination: A Phase 3 Randomized, Controlled Trial in Children and Young Infants at 11 African Sites

    No full text
    Background:A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission.Methods and Findings:6,537 infants aged 6-12 wk and 8,923 children aged 5-17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine.VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p<0.01 across all sites). VE during the 20 mo after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT).VE against clinical malaria in infants was 27% (95% CI 20% to 32%, per protocol; 27% [95% CI 21% to 33%], ITT), with no significant protection against severe malaria, malaria hospitalization, or all-cause hospitalization.Post-vaccination anti-circumsporozoite antibody geometric mean titer varied from 348 to 787 EU/ml across sites in children and from 117 to 335 EU/ml in infants (per protocol).VE waned over time in both age categories (Schoenfeld residuals p<0.001). The number of clinical and severe malaria cases averted per 1,000 children vaccinated ranged across sites from 37 to 2,365 and from -1 to 49, respectively; corresponding ranges among infants were -10 to 1,402 and -13 to 37, respectively (ITT). Meningitis was reported as a serious adverse event in 16/5,949 and 1/2,974 children and in 9/4,358 and 3/2,179 infants in the RTS,S/AS01 and control groups, respectively.Conclusions:RTS,S/AS01 prevented many cases of clinical and severe malaria over the 18 mo after vaccine dose 3, with the highest impact in areas with the greatest malaria incidence. VE was higher in children than in infants, but even at modest levels of VE, the number of malaria cases averted was substantial. RTS,S/AS01 could be an important addition to current malaria control in Africa.Trial registration:http://www.ClinicalTrials.gov NCT00866619. Please see later in the article for the Editors' Summary

    Efficacy and Safety of the RTS,S/AS01 Malaria Vaccine during 18 Months after Vaccination: A Phase 3 Randomized, Controlled Trial in Children and Young Infants at 11 African Sites

    No full text
    Background:A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission.Methods and Findings:6,537 infants aged 6-12 wk and 8,923 children aged 5-17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine.VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p<0.01 across all sites). VE during the 20 mo after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT).VE against clinical malaria in infants was 27% (95% CI 20% to 32%, per protocol; 27% [95% CI 21% to 33%], ITT), with no significant protection against severe malaria, malaria hospitalization, or all-cause hospitalization.Post-vaccination anti-circumsporozoite antibody geometric mean titer varied from 348 to 787 EU/ml across sites in children and from 117 to 335 EU/ml in infants (per protocol).VE waned over time in both age categories (Schoenfeld residuals p<0.001). The number of clinical and severe malaria cases averted per 1,000 children vaccinated ranged across sites from 37 to 2,365 and from -1 to 49, respectively; corresponding ranges among infants were -10 to 1,402 and -13 to 37, respectively (ITT). Meningitis was reported as a serious adverse event in 16/5,949 and 1/2,974 children and in 9/4,358 and 3/2,179 infants in the RTS,S/AS01 and control groups, respectively.Conclusions:RTS,S/AS01 prevented many cases of clinical and severe malaria over the 18 mo after vaccine dose 3, with the highest impact in areas with the greatest malaria incidence. VE was higher in children than in infants, but even at modest levels of VE, the number of malaria cases averted was substantial. RTS,S/AS01 could be an important addition to current malaria control in Africa.Trial registration:http://www.ClinicalTrials.gov NCT00866619. Please see later in the article for the Editors' Summary
    corecore