5 research outputs found

    Anti-yeast activity of extracts and fractions from Uvariodendron calophyllum (Annonaceae)

    Get PDF
    The resistance to available antifungals highlights the urgent need for innovative drugs to treat yeasts infections. This study aimed at evaluating the activity of extracts and fractions from Uvariodendron calophyllum against pathogenic yeasts. The ethanolic and aqueous extracts obtained by maceration were liquidliquid- partitioned using organic solvents and screened against isolates of Candida albicans, Candida glabrata, Candida parapsilosis, Cryptococcus neoformans and Candida albicans reference strains NR-29445, NR-29444, NR-29451, and NR-29450 from BEI Resources using the broth micro-dilution method. Time kill kinetic, inhibition of germ-tube, filamentation and chlamydosporulation, and biofilm formation were assessed using the best sub-fraction. Overall, the most interesting sub-fraction (FS: 237–253) showed an MIC value of 0.0625 mg/mL with cidal effect against C. albicans NR-29450 and NR-29445 at 0.25 mg/mL after 12-16 hours and 24 hours respectively. Moderate inhibitory effects were observed at 0.25 mg/mL against germ-tube formation, filamentation and chlamydosporulation of all C. albicans strains. Also, very moderate inhibition of biofilm formation by C. albicans NR-29450 at 0.25 mg/mL was obtained. The results obtained support U. calophyllum as a potential source of compounds with anti-yeast activity. Further studies will confirm its potential as source of anti-yeast drugs.© 2015 International Formulae Group. All rights reserved.Keywords: Uvariodendron calophyllum, anti-yeasts activity, time kill kinetics, biofil

    In vitro antiplasmodial activity-directed investigation and UPLC–MS fingerprint of promising extracts and fractions from Terminalia ivorensis A. Chev. and Terminalia brownii Fresen.

    Get PDF
    Please read abstract in the article.The Grand Challenges Africa programme is supported by the African Academy of Sciences (AAS), Bill & Melinda Gates Foundation (BMGF), Medicines for Malaria Venture (MMV), and Drug Discovery and Development Centre of University of Cape Town (H3D).https://www.elsevier.com/locate/jethpharm2023-07-09hj2023Chemistr

    Anti-<em>Plasmodium falciparum</em> Activity of Extracts from 10 Cameroonian Medicinal Plants

    No full text
    Background: In the midst of transient victories by way of insecticides against mosquitoes or drugs against malaria, the most serious form of malaria, caused by Plasmodium falciparum, continues to be a major public health problem. The emergence of drug-resistant malaria parasites facilitated by fake medications or the use of single drugs has worsened the situation, thereby emphasizing the need for a continued search for potent, safe, and affordable new antimalarial treatments. In line with this need, we have investigated the antiplasmodial activity of 66 different extracts prepared from 10 different medicinal plants that are native to Cameroon. Methods: Extracts were evaluated for their capacity to inhibit the growth of the chloroquine-sensitive (Pf3D7) and resistant (PfINDO) strains of P. falciparum using the SYBR green fluorescence method. The cytotoxicity of promising extracts against human embryonic kidney cells (HEK293T) mammalian cells was assessed by MTT assay. Results: The antiplasmodial activity (50% inhibitory concentration, IC50) of plant extracts ranged from 1.90 to &gt;100 μg/mL against the two strains. Six extracts exhibited good activity against both Pf3D7 and PfINDO strains, including cold water, water decoction, and ethyl acetate extracts of leaves of Drypetes principum (Müll.Arg.) Hutch. (IC503D7/INDO = 4.91/6.64 μg/mL, 5.49/5.98 μg/mL, and 6.49/7.10 μg/mL respectively), water decoction extract of leaves of Terminalia catappa L. (IC503D7/INDO = 6.41/8.10 μg/mL), and water decoction extracts of leaves and bark of Terminalia mantaly H.Perrier (IC503D7/INDO = 2.49/1.90 μg/mL and 3.70/2.80 μg/mL respectively). These promising extracts showed no cytotoxicity against HEK293T up to 200 μg/mL, giving selectivity indices (SIs) in the range of &gt;31.20–80.32. Conclusions: While providing credence to the use of D. principum, T. catappa, and T. mantaly in the traditional treatment of malaria, the results achieved set the stage for isolation and identification of active principles and ancillary molecules that may provide us with new drugs or drug combinations to fight against drug-resistant malaria

    Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts

    No full text
    Mycoses caused by Candida and Cryptococcus species, associated with the advent of antifungal drug resistance have emerged as major health problems. Improved control measures and innovative therapies are needed. This paper describes results from the screening of bio-guided fractionated extracts alone and combinations of Terminalia catappa, Terminalia mantaly and Monodora tenuifolia harvested in Cameroon. Crude ethanolic, hydro-ethanolic and aqueous extracts and bio-guided fractions were screened for antifungal activity against isolates of C. albicans, C. glabrata, C. parapsilosis and Cr. neoformans and the reference strain C. albicans NR-29450. Minimal inhibitory concentrations (MIC) were determined using a broth micro dilution method according to the Clinical &amp; Laboratory Standards Institute (CLSI). Time kill kinetics of extracts alone and in combination were also evaluated. Extracts from T. mantaly stem bark were the most active with the best MIC values ranging from 0.04 mg/mL to 0.16 mg/mL. Synergistic interactions were observed with combinations of sub-fractions from M. tenuifolia, T. mantaly and T. catappa. Combination of sub-fractions from M. tenuifolia and T. mantaly (C36/C12) showed synergistic interaction and fungicidal effect against four out of five tested yeasts. These results support further investigation of medicinal plant extracts alone and in combination as starting points for the development of alternative antifungal therapy

    In Vivo Antiplasmodial Activity of Terminalia mantaly Stem Bark Aqueous Extract in Mice Infected by Plasmodium berghei

    No full text
    Background. Terminalia mantaly is used in Cameroon traditional medicine to treat malaria and related symptoms. However, its antiplasmodial efficacy is still to be established. Objectives. The present study is aimed at evaluating the in vitro and in vivo antiplasmodial activity and the oral acute toxicity of the Terminalia mantaly extracts. Materials and Methods. Extracts were prepared from leaves and stem bark of T. mantaly, by maceration in distilled water, methanol, ethanol, dichloromethane (DCM), and hexane. All extracts were initially screened in vitro against the chloroquine-resistant strain W2 of P. falciparum to confirm its in vitro activity, and the most potent one was assessed in malaria mouse model at three concentrations (100, 200, and 400 mg/kg/bw). Biochemical, hematological, and histological parameters were also determined. Results. Overall, 7 extracts showed in vitro antiplasmodial activity with IC50 ranging from 0.809 μg/mL to 5.886 μg/mL. The aqueous extract from the stem bark of T. mantaly (Tmsbw) was the most potent (IC50=0.809 μg/mL) and was further assessed for acute toxicity and efficacy in Plasmodium berghei-infected mice. Tmsbw was safe in mice with a median lethal dose (LD50) higher than 2000 mg/kg of body weight. It also exerted a good antimalarial efficacy in vivo with ED50 of 69.50 mg/kg and had no significant effect on biochemical, hematological, and histological parameters. Conclusion. The results suggest that the stem bark extract of T. mantaly possesses antimalarial activity
    corecore