5 research outputs found

    Variable selection in multiple regression with random design

    Full text link
    We propose a method for variable selection in multiple regression with random predictors. This method is based on a criterion that permits to reduce the variable selection problem to a problem of estimating suitable permutation and dimensionality. Then, estimators for these parameters are proposed and the resulting method for selecting variables is shown to be consistent. A simulation study that permits to gain understanding of the performances of the proposed approach and to compare it with an existing method is given

    Variable selection in multivariate linear regression with random predictors

    Get PDF
    We propose a method for variable selection in multivariate regression with random predictors. This method is based on a criterion that permits to reduce the variable selection problem to a problem of estimating a suitable set. Then, an estimator for this set is proposed and the resulting method for selecting variables is shown to be consistent. A simulation study that permits to study several properties of the proposed approach and to compare it with existing methods is given

    Contributions to the variable selection in multidimensional and functional statistics

    No full text
    Cette thèse porte sur la sélection des variables dans les modèles de régression linéaires multidimensionnels et les modèles de régression linéaires fonctionnels. Plus précisément, nous proposons trois nouvelles approches de sélection de variables qui généralisent des méthodes existantes dans la littérature. La première méthode permet de sélectionner des variables aléatoires continues dans un modèle linéaire multidimensionnel. Cette approche généralise celle de NKIET (2001) obtenue dans le cas d'un modèle linéaire unidimensionnel. Une étude comparative, par simulation, basée sur le calcul de la perte de prédiction montre que notre méthode est meilleure à celle de An et al. (2013). La deuxième approche propose une nouvelle méthode de sélection des variables mixtes (mélange de variables discrètes et de variables continues) en analyse discriminante pour plus de deux groupes. Cette méthode est basée sur la généralisation dans le cadre mixte de l'approche de NKIET (2012) obtenue dans le cas de l'analyse discriminante de plus de deux groupes. Une étude comparative par simulation montre, à partir du taux de bon classement que cette méthode a les mêmes performances que celle de MAHAT et al. (2007) dans le cas de deux groupes. Enfin, nous proposons dans la troisième approche une méthode de sélection de variables dans un modèle linéaire fonctionnel additif. Pour cela, nous considérons un modèle de régression d'une variable aléatoire réelle sur une somme de variables aléatoires fonctionnelles. En utilisant la distance de Hausdorff, qui mesure l'éloignement entre deux ensembles, nous montrons dans un exemple par simulation, une illustration de notre approche.This thesis focuses on variables selection on linear models and additif functional linear model. More precisely we propose three variables selection methods. The first one is concerned with the selection continuous variables of multidimentional linear model. The comparative study based on prediction loss shows that our method is beter to method of An et al. (2013) Secondly, we propose a new selection method of mixed variables (mixing of discretes and continuous variables). This method is based on generalization in the mixed framwork of NKIET (2012) method, more precisely, is based on a generalization of linear canonical invariance criterion to the framework of discrimination with mixed variables. A comparative study based on the rate of good classification show that our method is equivalente to the method of MAHAT et al. (2007) in the case of two groups. In the third method, we propose an approach of variables selection on an additive functional linear model. A simulations study shows from Hausdorff distance an illustration of our approach

    Variable selection in discriminant analysis for mixed variables and several groups

    No full text
    We propose a method for variable selection in discriminant analysis with mixed categorical and continuous variables. This method is based on a criterion that permits to reduce the variable selection problem to a problem of estimating suitable permutation and dimensionality. Then, estimators for these parameters are proposed and the resulting method for selecting variables is shown to be consistent. A simulation study that permits to study several poperties of the proposed approach and to compare it with an existing method is given
    corecore