8 research outputs found

    New Zealand Building Project Cost and Its Influential Factors: A Structural Equation Modelling Approach

    Get PDF
    Construction industry significantly contributes to New Zealand's economic development. However, the delivery of construction projects is usually plagued by cost overruns, which turn potentially successful projects into money-losing ventures, resulting in various other unexpected negative impacts. The objectives of the study were to identify, classify, and assess the impacts of the factors affecting project cost in New Zealand. The proposed research model was examined with structural equation modelling. Recognising the lack of a systematic approach for assessing the influencing factors associated with project cost, this study identified 30 influencing factors from various sources and quantified their relative impacts. The research data were gathered through a questionnaire survey circulated across New Zealand construction industry. A total of 283 responses were received, with a 37% response rate. A model was developed for testing the relationship between project cost and the influential factors. The proposed research model was examined with structural equation modelling (SEM). According to the results of the analysis, market and industry conditions factor has the most significant effect on project cost, while regulatory regime is the second-most significant influencing factor, followed by key stakeholders' perspectives. The findings can improve project cost performance through the identification and evaluation of the cost-influencing factors. The results of such analysis enable industry professionals to better understand cost-related risks in the complex environment

    Installation Quality Inspection for High Formwork Using Terrestrial Laser Scanning Technology

    Get PDF
    Current inspection for installation quality of high formwork is conducted by site managers based on personal experience and intuition. This non-systematic inspection is laborious and it is difficult to provide accurate dimension measurements for high formwork. The study proposed a method that uses terrestrial laser scanning (TLS) technology to collect the full range measurements of a high formwork and develop a genetic algorithm (GA) optimized artificial neutral network (ANN) model to improve measurement accuracy. First, a small-scale high formwork model set was established in the lab for scanning. Then, the collected multi-scan data were registered in a common reference system, and RGB value and symmetry of the structure were used to extract poles and tubes of the model set, removing all irrelevant data. Third, all the cross points of poles and tubes were generated. Next, the model set positioned on the moving equipment was scanned at different specified locations in order to collect sufficient data to develop an GA-ANN model that can generate accurate estimates of the point coordinates so that the accuracy of the dimension measurements can be achieved at the millimetre level. Validation experiments were conducted both on another model set and a real high formwork. The successful applications suggest that the proposed method is superior to other common techniques for obtaining the required data necessary for accurately measuring the overall structure dimensions, regarding data accuracy, cost and time. The study proposed an effective method for installation quality inspection for high formwork, especially when the inspection cannot be properly operated due to cost factors associated with common inspection methods

    BIM Adoption in the Cambodian Construction Industry: Key Drivers and Barriers

    Get PDF
    Critical issues surrounding the promotion and adoption of building information modeling (BIM) for construction projects are largely country-specific due to contextual socio-cultural, economic, and regulatory environments impacting construction operations and outcomes. There is little information on BIM adoption issues specific to the Cambodian construction industry (‘the industry’). This paper aims to narrow existing knowledge by investigating key drivers for, and barriers to the adoption of BIM in the industry. Using descriptive survey method, feedback was received from contractors and architects that were registered with their respective trade and professional associations in the industry. The multi-attribute method and the Statistical Package for the Social Sciences (SPSS)-based Kendall’s coefficient of concordance (W) test were used to analyze the empirical datasets. Results showed that out of the 13 significant drivers identified in the study, the most influential comprised the technology’s ability to remarkably enhance project visualization and schedule performance; this is followed by awareness that the technology is redefining how project information is created and shared among stakeholders and therefore the future of the industry that cannot be ignored. On the other hand, the most constraining barrier to the adoption of the technology, out of 19 significant barriers, related to strong industry resistance to change, especially reluctance to change from 2D drafting to 3D modeling; other highly rated barriers included the high initial cost of the software and the shortage of professionals with BIM skills. Implementation of the study findings could support greater uptake of the technology and the leveraging of its key benefits to improving project success and the growth of the Cambodian construction industry, as well as those of other developing economies that share similar socio-cultural, economic, and regulatory environments
    corecore