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Abstract: Current inspection for installation quality of high formwork is conducted by site managers
based on personal experience and intuition. This non-systematic inspection is laborious and it is
difficult to provide accurate dimension measurements for high formwork. The study proposed a
method that uses terrestrial laser scanning (TLS) technology to collect the full range measurements
of a high formwork and develop a genetic algorithm (GA) optimized artificial neutral network
(ANN) model to improve measurement accuracy. First, a small-scale high formwork model set was
established in the lab for scanning. Then, the collected multi-scan data were registered in a common
reference system, and RGB value and symmetry of the structure were used to extract poles and
tubes of the model set, removing all irrelevant data. Third, all the cross points of poles and tubes
were generated. Next, the model set positioned on the moving equipment was scanned at different
specified locations in order to collect sufficient data to develop an GA-ANN model that can generate
accurate estimates of the point coordinates so that the accuracy of the dimension measurements can
be achieved at the millimetre level. Validation experiments were conducted both on another model set
and a real high formwork. The successful applications suggest that the proposed method is superior
to other common techniques for obtaining the required data necessary for accurately measuring the
overall structure dimensions, regarding data accuracy, cost and time. The study proposed an effective
method for installation quality inspection for high formwork, especially when the inspection cannot
be properly operated due to cost factors associated with common inspection methods.

Keywords: terrestrial laser scanning; high formwork; RGB; genetic algorithm; artificial neutral
network

1. Introduction

Formwork is a temporary structure on a construction site into which concrete or
a similar substance is poured, while the falsework supports the shuttering moulds [1].
In building construction, formwork plays a major role in determining the duration and
schedule of construction activities [2]. In fact, the cost of formwork construction (forming
cost) accounts for 10% of the overall cost and erection and assembly of formwork systems
(forming time) spend 50% of the overall construction time of the entire project [3]. Recently,
with developments in the building industry, high formwork is used more widely. High
formwork projects are more significant than general formwork projects due to their complex
structures. Their large size and complex structure make them more vulnerable to potential
safety risks.

Symmetry 2022, 14, 377. https://doi.org/10.3390/sym14020377 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020377
https://doi.org/10.3390/sym14020377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1654-311X
https://doi.org/10.3390/sym14020377
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020377?type=check_update&version=2


Symmetry 2022, 14, 377 2 of 31

In the installation of high formwork structures, errors are unavoidable, resulting in
defects that differ from code requirements or design specifications. In general, small errors
are permitted, but they must be within an acceptable error range. Otherwise, they can create
potential safety risks. Any such safety risks can adversely affect subsequent processes,
lower the efficiency of the construction work and increase construction costs, or worst of
all, cause accidents [4]. Such accidents can lead to significant loss of life as well as financial
losses. Hence, it is necessary to conduct proper, high-quality inspections for high formwork
after installation. However, the inspection process for high formwork has not been dealt
with systematically due to the lack of an appropriate inspection technology for such projects
and a shortage of primary data necessary to establish a plan. In fact, inspecting these factors
on construction site using common methods like tape measurements or plumb monitoring
is exhausting and laborious.

The main concern of the inspection of installation quality for high formwork includes:
(1) to check the position of the main components of the formwork such as vertical poles,
horizontal tubes, bottom reinforcing tubes and the diagonal bracing; (2) to check whether
the spacing of vertical pole and lift height (the distance between the two neighbour tubes)
are in accordance with the requirements of the building code. Based on the investigations
of [5–7], these factors are the main determinants of the proper function of a high formwork.
According to China’s building codes related to high formwork [8–10], they are the main
inspection terms during the inspection process. Hence, the study proposed a method for
effectively checking them.

Current installation quality assessment of high formwork is mainly based on manual
inspection using traditional measurement instruments like measuring tapes, which require
close-up access, and are not ideal for detecting defects or for accurately measuring the
dimensions and recording the data. The inspection process is mainly based on human
inspection and judgement, which is labour-intensive and inefficient, especially for large-
scale structures.

Different approaches have been adopted, including theodolites, joint meters, and
inclinometers, as well as tachymetry, global navigation satellite system (GNSS), and robotic
total station [11,12]. They can offer accurate results, but they only provide discrete moni-
toring points and fail to attain full area coverage. Some measurement techniques are also
too expensive. Moreover, not all available techniques are suitable for inspection of high
formwork due to the size and complex shape of the structure, and level of required accuracy.
When choosing a suitable measurement system, factors such as cost, time required for
operation, and the required skills of the user should all be considered [13–15].

Inspection accuracy and efficiency can be improved by using terrestrial laser scanning
(TLS) technology. Another benefit of TLS is its long range, which allows data collection
in inaccessible fields. The TLS system can be regarded as the best monitoring technique
for high formwork owing to its ability to provide high spatial resolution and accurate
measurements. A major benefit of TLS is that it provides rapid and dense measurements in
inaccessible areas [16]. TLS can produce point clouds with high level of details and accuracy,
which is particularly good for detailed investigations on a large scale [17,18]. The large
amount of accurately measured data has great potential to deliver measurements that are
difficult to achieve by other methods in such a short period of time, with simple installation
requirements. TLS measurements require only a laser scanner, a laptop computer with data
processing software, and several reference targets.

Previous studies have provided sound evidence for the efficiency and effectiveness
of inspection operation using TLS. Gordon et al. [19] and Akinci et al. [20], for example,
demonstrated that manual inspection can miss important information such as site changes
and defects. However, the adoption of TLS can improve efficiency in construction inspec-
tion via timely provision of comprehensive, as-built data. Although there are advantages
to adopting TLS, some studies [21–23] also point out the challenges that adversely influ-
ence the effective use of TLS, including difficulties in effectively extracting the required
information from scan data and in generating required accuracy results.
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This study provides a new method for conducting quality inspection using TLS
technology. The proposed method can effectively extract important elements such as poles
and tubes in high formwork from the point cloud data. A GA-ANN model was developed
to increase the accuracy of the TLS measurements. To achieve these, some techniques are
first proposed to rapidly extract the important points from the dense data. Secondly, a
small-scale high formwork model set with set dimensions and simulated defects was built
to help in collecting sufficient data to train the ANN model. The obtained measurements
based on the results from the ANN model were compared to the set dimensions to evaluate
the performance of the ANN model. Moreover, the genetic algorithm was adopted to
optimised ANN model. The performance of the GA-ANN model was compared with other
ML algorithms such as support vector machine and random forest. Next, a laboratory test
was conducted to validate the proposed method. Finally, the proposed method was used
on a real high formwork to validate its effectiveness.

The uniqueness of the study lies in: (1) the consideration of TLS as an effective tool
in quality inspection for high formwork after installation; (2) the rapid extraction of the
standard poles and tubes from the point clouds; and (3) the development of a GA-ANN
model that can generate the coordinates of important points to accurately calculate the
distance between the important points and thus detect defects that fall out of the acceptable
error range.

The organization of the study is as follows: the literature review and the highlights of
the contribution of the current study are described in Section 2. The proposed method for
installation quality inspection for high formwork are illustrated in Section 3. The validation
of the proposed method on a real high formwork are shown in Section 4. Section 5 provides
the conclusion and future research plans.

2. Literature Review
2.1. TLS System

Several studies have been carried out focusing on the use of terrestrial laser scanning
(TLS) technology as an inspection approach including the application of TLS for health
monitoring and the inspection of bridge structures [24,25]; condition monitoring and
defect identification for historic structures and building facades [26,27]; checking concrete
conditions [16,28]; and as-built modelling [25,29]. In a study of [24] TLS that was used in
building damage inspection after an earthquake, the accuracy of the measurement was
achieved at the millimetre level, a performance comparable with conventional methods
like displacement transducers and inclinometers.

TLS has been widely adopted in the construction field for construction progress
tracking [30,31], the reconstruction of buildings [32–35], and construction quality assur-
ance [36–38]. However, limited studies have been performed using TLS to inspect the
installation quality of high formwork.

2.2. Object Recognition

Extensive studies on the use of TLS in object recognition have been conducted. TLS
data can generally be extracted based on features. Some studies also proposed to specify
the point data based on the RGB value. For example, Pu and Vosselman [33] proposed a
region-growing method to effectively extract planar objects from point clouds of a building
façade, and a feature recognition method was used to classify the planar objects. In the
study [39], the least square method was used to fit lines to extract important lines and points
from the point clouds of structural elements on buildings damaged by an earthquake.

Some studies also focused on developing an automatic algorithm to recognize and
segment required objects from point clouds. For example, Riveiro et al. [40] recommended
an approach that can automatically extract masonry blocks from point clouds. In the
study [41], machine learning methods were used to automatically classify the morphological
segments of a hillslope affected by shallow landslides into seven classes (e.g., scarp, eroded
area, deposit, rock outcrop and different classes of vegetation). Lee et al. [42] used a
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method that automatically extracts pipelines and their detailed parts, such as elbows and
tees, from point clouds. Similarly, Czerniawski et al. [43] proposed as fully automatic
approach for extracting pipe spools from point clouds. Some studies also developed
methods that can recognize infrastructure objects based on point clouds. For example,
Holgado-Barco et al. [44] extracted features from Light Detection and Ranging (LiDAR)
data to model a road axis.

Most of the studies have focused on extracting data from buildings or infrastructure
such as roads or bridges. However, few studies extract important elements from point
cloud data based on the specific features of a high formwork. The combination of the RGB
value of the point cloud data and the symmetry of the structure and special shape of the
main components of the high formwork can help to rapidly extract important data from
scan data.

2.3. Quality Assessment and Control

Traditionally, structural dimension checks are performed manually. Two main inspec-
tion methods are widely used: (1) directly check based on visual observations or using a
measuring tape; (2) obtain coordinates of serval feature points by using total station. How-
ever, these methods are laborious, time-consuming, and insufficiently accurate. Recently,
TLS has been widely used in quality assessment and control, such as surface-defect detec-
tion [45,46] or structure dimensional check in the Architecture, Engineering & Construction
(AEC) industry [47–49]. Moreover, some studies have proposed using TLS to check the
dimensions of structures. For example, Wang et al. [50] developed an automatic method to
estimate the dimensions of a precast concrete panel using point clouds data. Bosch’e [51]
proposed an approach to automatically detect and calculate the as-built dimensions of a
steel structure based on laser scan data. Lee & Park [52] proposed a method using both
TLS and an AI model to perform a dimensional check. And Nuttens et al. [53] provided a
clear work flow to illustrate how to use TLS to measure the dimensional changes in two
tunnels in Belgium and to generate results with submillimeter accuracy.

Although these studies provided good examples about the adoption of TLS technology
in the AEC industry, they also admitted some issues about TLS measurement. First, TLS
can quickly provide as-built data, but the scan strategy should be properly designed in
order to provide good-quality data. Moreover, some techniques should be used to rapidly
extract important data from dense scan data. In addition, the accuracy level of the TLS
measurement should be improved to satisfy the requirements.

The contribution of the study lies in three aspects. First, the study proposes using
TLS technology in the inspection of high formwork installation quality. Due to the unique
complex structure of the high formwork and the labor and cost concerns of the inspection
process, this study provides a reasonable and cost-effective way to conduct the inspection
process. Secondly, the study provides an effective to quickly extract the data related to the
important components of the high formwork such as vertical poles and horizontal tubes.
Thirdly, the study used genetic algorithm optimized ANN model to improve the accuracy
of the TLS measurements, which can provide coordinates of the cross points of the poles
and tubes at millimeter level.

3. The Proposed Method

The proposed method used both TLS data and ANN model for evaluating installation
quality for high formwork according to China building codes [8–10]. The major clauses
of the building codes and regulations for the installation quality of high formwork are
illustrated in Table 1. Therefore, the main tasks of the study are to evaluate the positions
of the vertical poles, horizontal tubes, and diagonal bracing according to clauses i–iii,
assess the longitudinal spacing of vertical pole according to clause iv, inspect the transverse
spacing of vertical pole according to clause v, check the space between the two neighbour
tubes (the lift height) according to clause vi, and check the position and the height of the
bottom reinforcing tube according to clause vii.
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Table 1. Classification of inspection terms.

Clause Inspection Term Requirements by China
Building Codes Acceptable Error

i Standing pole

Every pole should be vertical
to the ground;

∆ ≤ 1/500 H and horizontal
deviation ∆ ≤ ±50 mm

5 mm

Description diagram
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The angle of the horizontal diagonal bracing and
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less than 1.2 m ≤30 mm

v Transverse spacing of
standing pole
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The proposed method for installation quality assessment of high formwork is carried
out in four steps. First, a small-scale high formwork model set was built in the lab and
scanned to collect multi-scan data, which were then registered in a common reference
system. Secondly, RGB value, symmetry of the structure and shape fitting algorithm were
used to extract the poles and tubes of the model set and all the cross-points of the poles and
tubes were generated. After that, the model set was positioned on a moving equipment
and moved along the X, Y and Z axes, from 1 mm to 10 mm at interval 1 mm, respectively.
The model set was scanned at every movement in order to collect sufficient scan data for
developing an ANN model that can help to generate accurate coordinates of the cross
points at the millimetre level. Finally, another small-scale high formwork model set was
established in the lab to validate the efficiency of the proposed method. The flowchart of
the proposed method is described in Figure 1. The details of the four steps are illustrated
as follows.
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Figure 1. Flowchart of the installation quality assessment framework for a high formwork.

3.1. Scan Data Obtainment

The model set is a length 1.3 m × width 1.0 m × height 1.6 m formwork, consisting
of steel vertical poles and horizontal tubes. The model set contains 77 standard poles and
270 tubes. The steel bars are connected via couplers, the longitudinal spacing of vertical
pole is set as 12 cm, the transverse spacing of pole is 15 cm, and the lift height (the distance
between two neighbouring tubes) is 10 cm. The simulated defects were purposefully set
including: the leftmost longitudinal pole is not vertical to the ground but inclined 1 degree;
the first top longitudinal tube is not parallel to the ground and is inclined 1 degree; the
distance between the 5th and 6th longitudinal poles on the front side is 14 cm; the distance
between the 5th and 6th transverse poles on the leftmost side is 17 cm; and the space
between the 10th and 11th transverse tubes on the leftmost side is 12 cm. The details of the
formwork dimensions are shown in Figure 2.
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3.1.1. Scan Strategy

The small-scale high formwork model set located on a moving equipment, the scanning
position, and the control points for the laboratory trial are shown in Figure 3. The moving
equipment can move freely along X, Y, and Z direction at submillimetre level. Targets were
used for post-processing data registration in a common reference frame. A Trimble total
station was used to survey control points and targets in order to build a control network.
The observations were adjusted to minimize the errors. The resulting coordinates were
corrected to within 1 mm. The Trimble TX5 3D laser scanner was used to carry out the
scans and collect point cloud data. The small-scale model located on the moving equipment
move from 1 mm to 10 mm at interval 1 mm along X, Y, and Z directions, respectively. In
every 1 mm movement, the model was scanned once, and thus, the model was scanned
30 times in total.

3.1.2. Data Registration and Noise Removal

After the completion of the scan of the small-scale high formwork model set, it was
necessary to conduct post processing of the raw point cloud data. Co-registration of
multiple point clouds in a unit reference frame is important for further data processing. Two
methods are usually adopted: homologous points identification and surface matching [54].
Homologous points identification needs several points indicated a same object that can
be identified without spatial ambiguity in subsequent point clouds. Hence, targets-based
registration was used in this study. A control network with more stable points should be
established in order to periodically observe the targets and verify their stability. In this
study, four stable locations were identified as TLS targets in such a way that they were
geometrically well distributed.

The scans were registered using the targets and Iterative Closet Point (ICP) adjustment.
The details of the ICP algorithm can be found in the study of Besl and McKay [55] and
in the study of Sgrenzaroli and Wolfart [56]. The data processing was conducted using
algorithms implemented in the scanner combined software JRC 3D Reconstructor. The
combined software not only registers the multiple scans data but can also remove the noise
data and reduce the data density to facilitate further data processing. Alternatively, point
clouds data can be exported in many formats like ASCII for post processing in MATLAB.
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3.2. Data Extraction
3.2.1. Removal of Mixed Pixels

The scan data of a high formwork usually include multiple objects such as vertical
poles, horizontal tubes, couplers, braces, bolts, ground, timber formwork, and so on.
Construction sites include other unexpected noise, including construction equipment,
workers, and etc. In order to retain useful data relating to poles and tubes, the others must
be removed. Unfortunately, mixed pixels that are a type of false measurement are always
included in the laser scan data [49]. It occurs when a laser beam is split into two parts and
falls on two different objects. Hence, the laser scanner obtains two reflective signals that are
from two different objects, and then generates the mixed pixel measurements that cannot
represent either of the two objects [57–60].

As mixed pixels adversely influence the recognition of the poles and tubes, it is
necessary to remove the mixed pixels before further processing of the point data. Since
mixed pixels are located at greater distances from their neighbours [57], an algorithm based
on the average distance from one point to its k-nearest neighbours was employed in this
study. If the average distance is bigger than a threshold value, the point is considered to
be a mixed pixel. Moreover, in this study, colour information of the point data was used
to filter out the mixed pixels. Steel poles and ledgers usually have substantially different
colours so that pixels will experience large colour changes. The proposed method regards
both the distance value and the average colour difference dRGB between one point and its
surrounding k neighbours. The colour difference can be calculated in Equation (1).

dRGB =
∑k

i=1

√
(Ri − R0)

2 + (Gi − G0)
2 + (Bi − B0)

2

k
, (1)

where (x0, y0, z0) and (R0, G0, B0) are the coordinates and RGB values of this point, re-
spectively, and (xi, yi, zi) and (Ri, Gi, Bi) are the coordinates and RGB values of the ith
neighbor, respectively.
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Based on distance value and colour difference, a discriminant analysis can be con-
ducted to classify the valid data and mixed pixels clearly, as shown in Figure 4. The
irrelevant data can be removed from the scan data. This step aims to retain data associated
with standard poles and ledgers and remove other scan data as outliers. The proposed
method is expected to generate more reliable results than conventional methods.
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3.2.2. Extraction of Scan Data Associated with Poles and Tubes

As the high formwork mainly composed of vertical cylindrical poles and horizontal
cylindrical tubes, upright poles and horizontal tubes have distinctive geometries and
positions that differ from other objects. Hence, both geometries and positions of the scan
points were used for classification. The proposed data extract method consists of six steps,
as shown in Figure 5.
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Figure 5. Data extraction method.

An array of Z-planes (Parallel to the XY plane) with a certain interval was inserted
to the refined point cloud data and the data was projected onto the Z planes, as shown in
Figure 6. For each slice, the point cloud data were projected on to the Z plane, as shown in
Figure 7.
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Figure 7. X-Y projection of point cloud data of a pole on a slice.

Since a vertical pole is circular in section, the data in every Z plane were clustered
in a circle. The region growing algorithm [61] was used to add more points to the points
clusters within a certain radius (the radius of a pole). The algorithm iteratively explores
the point clusters and adds more neighbor points to the clusters in order to form a circular
shape with a certain radius until all the points clusters in the array of Z planes have been
checked. If a point does not belong to any of the clusters, it can be seen as an outlier to
be removed. The remaining data in every Z plane were corrected in MATLAB by fitting a
simple circle based on the section formation of a standard pole. Based on the points the
boundary of the poles and tubes can be detected. The centre and diameter of a pole are
then fitted according to the detected boundary, as shown in Figure 8. As the same pole has
the similar XY coordinates, Equation (2) was used to evaluate whether the point belong to
the pole or not.

(x− xi)
2 + (y− yi)

2 ≤ p, (2)

where x, y is the coordinates of the vertical pole; xi, yi is the coordinate of the i point; p is
the threshold value.

The centre points of the circles on each Z planes belonging to the same pole can be
determined, as shown in Figure 9. A line fitting algorithm in MATLAB was used to fit
the centre points in each Z plane to obtain the vertical pole, as shown in Figure 10. Every
vertical pole can be extracted. If the model set is subjected to deformation, data can be fitted
with higher order polynomials for accurate representation. The same methods were used
to extract every horizontal tube, although in that case an array of X-planes was inserted
for the extraction of the longitudinal tubes and an array of Y-planes were inserted for the
extraction of the transverse tubes. The thickness and the interval of the inserted planes are
highly related to the size and density of the point data.
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This method has several potential advantages. First, it can collect sufficient data for
individual poles to facilitate the recognition process. Second, the outliers can be removed
effectively. Third, the incomplete scanning of standard poles due to the occlusion of
line-of-sight by other objects can be corrected using the region growing technique.

The attained lines representing the poles were checked to determine whether they
were vertical to the plane XOY. And the lines indicated tubes were checked to determine
whether they were perpendicular to the plane YOZ. The projection of an inclined pole on
the XOY plane is shown in Figure 11. If the distance between the leftmost and rightmost
centroids are larger than a threshold value, it indicates the pole is not vertical to the XOY
plane. Then the pole that is not vertical to the planes should be filtered out to check its
inclination value. The pole should be considered a defect that is not follow the building
code rule. The rule states that all poles should be perpendicular to the ground and all tubes
should be parallel to the ground. Hence, the pole or the tube should be re-installed to
correct the defect.
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In this study, a pole and a tube of the small-scale high formwork model were inclined
on purpose to validate the proposed method. The proposed method can identify the pole
and the tube that are not properly installed. Next, the cross points of lines that represent
poles and tubes were generated. The cross points are disk lock nodes, which are considered
important points in this study. The further ANN model was developed to generate accurate
coordinates of the key points in order to accurately calculate the spacing of the pole and
the lift height. Such data are important for building code requirements.

The longitudinal spacing of pole can be calculated in Equation (3).

dli =

√
(xi+1 − xi)

2, (3)

The transverse spacing of pole can be calculated in Equation (4).

dti =

√
(yi+1 − yi)

2, (4)

The lift height (space between two neighboring tubes) can be calculated in Equation (5).

si =

√
(zi+1 − zi)

2, (5)

where xi, yi, zi indicate the coordinates of the i point.

3.3. ANN Structure and Training

The TLS technology was used as a basis for obtaining data for neutral network training.
This can generate better predictions with acceptable accuracy. The flowchart of the proposed
scheme is displayed in Figure 12.
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3.3.1. ANN Training Data Collection

In order to improve the accuracy of the coordinates of the key points, the study needs
to collect sufficient data to develop an ANN model. The spacing of the pole and the lift
height of the small-scale high formwork model set were specified. The model set first
was positioned on a movement equipment and moved along the X direction at interval
1 mm, and then the model set was moved along the Y direction at interval 1 mm from
1 mm-10 mm. Finally, the model set was moved along the Z direction from 1 mm to
10 mm at interval 1 mm. Every movement was scanned. Thus, the model set was scanned
30 times, and the collected 30 datasets were used to develop an ANN model to predict the
coordinates of the cross points of the poles and tubes. The moving distance is specified as
1 mm, so that the coordinates of the key points at t moment can be calculated based on the
coordinates at t − 1 moment, as shown in Equation (6). The initial coordinates of the key
points were generated from total station measurement.

Pt
i

 xt
i

yt
i

zt
i

 =Pt−1
i


xt−1

i + 1 mm
(→

X
)

yt−1
i + 1 mm

(→
Y
)

zt−1
i + 1 mm

(→
Z
)

 (6)

where Pt
i

 xt
i

yt
i

zt
i

 indicates the coordinate of the i point at t moment; xt−1
i + 1 mm(

→
X)

indicates the model move along the X axis at specified value 1 mm, so the x coordinate of
the i point at t moment equal to the x coordinate of the point at t − 1 moment add 1 mm,
but the y and z coordinates of the i point at t moment are the same as that at t − 1 moment.

3.3.2. ANN

The ANN model was used to solve the non-linear problem. The strong self-learning
ability of the ANN can generate accurate predictions with high computational speed. Many
kinds of neutral networks have been established, and multilayer feed forward is one of
the most popular. Back propagation (BP) is one of commonly used algorithm, which can
minimize ANN error properly [62]. Hence, the back propagation (BP) neutral network was
adopted in this study.

Although ANN has been widely and successfully used in many studies, it has several
disadvantages. For example, it is tedious to choose the number of hidden layers and
the number of nodes at the hidden layer; the learning rate of ANN is usually decided
randomly; and it is more likely to achieve local minima rather than global minima [63–65].
Moreover, the proper selection of parameters such as learning rate and momentum co-
efficient are important for model convergence progress. Hence, in this study, genetic
algorithm (GA) was utilized to designate the parameters of the ANN model including the
number of hidden layers, the number of nodes at the hidden layer, learning rate, and the
momentum coefficient.

3.3.3. ANN Optimization by Genetic Algorithm

GA is a meta-heuristic, population-based searching algorithm based on natural se-
lection [66,67]. In this method, each individual in the population can generate a solution
by reproducing the individuals, and the solution should converge on the best one. In
this study, an individual includes four genes such as the number of the hidden layer, the
number of nodes at the hidden layer, learning rate and momentum coefficient, formed as
shown in Equation (7).

i = (c1, c2, c3, c4), (7)
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where i represents an individual chromosome and c1 to c4 are binary codes for the four
genes. A population is composed of a number of individual chromosomes, which can be
expressed as I = (i1, i2, i3, . . . in), n denotes the number of individual chromosomes.

GA uses three operators like selection, crossover and mutation to produce next gener-
ation chromosomes with better fit. The selection operator chooses the chromosomes with
better fit based on the selection criteria defined in the algorithm. In the crossover operator
the two selected parent chromosomes were merged from a new solution, which makes the
probability of the best fit higher in the next generation. Different crossover rules can be
used. In this study, a random crossover from two parents was employed. The mutation
operator can make random changes to the chromosome features to avoid the local optimum.
The details of the GA can be found in other studies [68,69]. The main parameters were used
in Genetic Algorithm are shown in Table 2.

Table 2. Main parameters of GA algorithm used for optimizing ANN.

Parameter Designation Value

Population size Npop 50
Generation number Ngen 100

Number of binary digits 10
Number of iterations 1000

Cross-over probability Pc 0.95
Mutation probability Pm 0.01

Fitness value 1

3.3.4. GA-ANN

The number of nodes at the input and output layers is equal to the input and output
variables, respectively. The number of the hidden layer and the number of nodes at the
hidden layer were determined by GA. The important parameters for an ANN model consist
of Nh, Nnh, Lr, and Mc, and the four genes in the binary form were considered for each
chromosome. The number of the hidden layer (Nh) was limited 1 to 2, the number of the
node at each hidden layer (Nnh) is selected from 1 to 10, and the learning rate (Lr) and
momentum coefficient (Mc) ranged from 0 and 1.

The TLS measuring coordinates were seen as inputs, the real value of the coordinates
was regarded as output, and then the transfer model was estimated. The ANN models with
different momentum coefficients are shown in Figure 13. The ANN3 with the momentum
coefficient Mc = 0.876 perform the best compared with other ANN models. As shown in
Figure 13, the momentum coefficient cand strongly influence the model performance.
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According to the results of the study [70], the position of the laser scanners has
significant influence on data scanning accuracy. Hence, the study used the positions of
the TLS as the ANN model inputs. In this study, the inputs of the ANN model were the
coordinates of the key points, R distance, laser coefficients, and scan conditions. The output
of the ANN model was the specified value (specified value of the set distance and space
dli = 12 cm; dti = 15 cm; si = 10 cm). The value of the cross points can be calculated by
using Equations (3)–(5).

Sigmoid function was employed as a transfer function for output and hidden layers
of the GA-ANN. The model training process was to adjust the model parameters in order
to minimize the error between the output and the target. Mean Squared Error (MSE) was
adopted to evaluate the model performance, it can be calculated in Equation (8).

MSE =
1
n

n

∑
i=1

(pi − xi)
2, (8)

where n is the number of data samples, pi is the model estimate of the i sample, and xi
represents the actual value of the i sample.

During the training process, the number of nodes and layers and functions of the
network were changed. MATLAB software was used to train and test the ANN model.
The important parameters of the proposed ANN model were first encoded as the genes
of the genetic algorithm (GA). Then, the fitness values of each individual chromosome
were calculated based on the fitness function. After a series of GA selection, such as the
crossover, the mutation and the duplication, the GA can discover the optimal individual
chromosome corresponding to the optimal fitness values. The evolution process is shown
in Figure 14. It should be noticed that GA can properly coverage the fitness value to the
global optimum rather than any other local optimal by random initialization.
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Figure 14. The evaluation process of GA.

According to the GA results, the best number for the hidden layer was found to be
one; the best number for the nodes at the hidden layer is six. The structure of the proposed
GA-ANN model is shown in Figure 15.

The optimum network results in the lowest MSE. The optimum configuration of
the ANN model is shown in Table 3. Moreover, several network configurations with
different nodes at hidden layer were developed to evaluate and compare the accuracy of
the proposed GA-ANN model in estimating the variables. The MSE function was used to
assess the performance of the proposed GA-ANN model. The prediction performance of
the models for the data of simulated defects and the coordinates of key points are shown in
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Table 4. The corresponding rating was provided by averaging each MSE for the models.
As shown in Table 4, the proposed GA-ANN model achieves the best results among the
other models. To assess the model performance of the prosed GA-ANN model, the study
provided model performance value for ANN model and the ANN model optimised by
using GA respectively. The model performance of the proposed GA-ANN model and the
second-best ANN model compared with the actual value of the measurements are shown
in Figure 16.
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Table 3. Optimum configuration of the ANN obtained from GA.

Gene Designation Value

Number of hidden layer (c1) Nh 1
Number of hidden layer neurons (c2) Nnh 6

Learning rate (c3) Lr 0.125
Momentum coefficient (c4) Mc 0.876

Table 4. Prediction performance of the proposed GA-ANN model versus ANN model.

Model Nnh Predicted Simulated Defects (MSE) Predicted Coordinates (MSE) Rank

1 2 3 4 5 X Y Z

ANN 2 0.713 0.529 0.871 0.405 0.679 0.862 0.837 0.893 7
3 0.064 0.057 0.070 0.061 0.066 0.073 0.049 0.069 4
4 0.021 0.011 0.018 0.023 0.016 0.019 0.012 0.014 2
5 0.028 0.030 0.015 0.022 0.014 0.018 0.017 0.021 3
7 0.143 0.135 0.164 0.145 0.105 0.179 0.101 0.141 5
9 0.437 0.219 0.204 0.591 0.140 0.759 0.217 0.611 6

GA-ANN 6 0.005 0.004 0.004 0.003 0.004 0.002 0.003 0.002 1
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The obtained estimates from GA-ANN model versus the actual value are described
in Figure 17. Obviously, the proposed model can generate reliable predictions as error is
nearly zero. The R2 results for the proposed GA-ANN model which are very close to 1 for
training and testing dataset, as shown in Figure 18, explored that the proposed GA-ANN
can generate high accuracy predictions.
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According to [71], the R2 of the ANN model indicates that the inputs provide sufficient
information for the model predictions. Based on the results of [72], the Coefficient of
Variation-Root Mean Square Error (CV-RMSE) should be <30%, CV-RMSEs of the ANN
model is 12.5%, indicating that the developed ANN model meets the standard. Other model
performance evaluations, such as Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE), also indicate that the model can generate predication with high accuracy.
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3.3.5. Comparison with Other ML Algorithms

To better demonstrate the GA-ANN learning approach, the common methods (ANN,
SVM and RF) that are often used are also applied in this study. Support vector machines
(SVMs) are well-known supervised machine learning techniques that were proposed by
Cortes and Vapnik [73] to solve classification problems, and then were extended to regres-
sion domain by Vapnik et al. [74]. For nonlinear problems, a nonlinear kernel function is
utilized. Random forest (RF) is an effective machine learning method proposed in 2001 [75],
which can be applied to classification, regression, and feature selection problems. RF is an
ensemble learning model with a decision tree as the base classifier, combining bagging and
random subspace theory.

To evaluate the performance of the suggested models, three different metrics, Mean
square error (MSE), Correlation coefficient (R), and root mean square error equation (RMSE)
are introduced. These statistical indicators assess the efficiency, linear relationship, and
deviation experienced from the average values. Statistical indices including MSE, R, and
RMSE gave an overall view of the precision and error of the model. The performance
measurements of the models are shown in Table 5. GA-ANN model was superior, followed
by ANN model, RF model and the least was SVM model. This might be indicated that,
ANN, SVM, and RF are individual learning algorithms while GA-ANN is an optimized
learning algorithm.

Table 5. The performance evaluation of the suggest models.

Model
R RMSE MSE

PSD PC PSD PC PSD PC

GA-ANN 0.987 0.985 0.008 0.005 0.004 0.0035
ANN 0.918 0.873 0.023 0.045 0.018 0.015
SVM 0.880 0.798 0.187 0.215 0.157 0.173
RF 0.881 0.853 0.034 0.048 0.011 0.035

PSD = predicted simulated defects; PC = predicted coordinates.

3.4. Validation

A different small-scale high formwork model was installed with different values of
distance between the poles and tubes and simulated defects in different area, as shown in
Table 6. The different value set in the installation was to verify that the model can detect
differences to improve the robustness of the training model.

Table 6. The detail of the second high formwork model set.

Term Description

Length 60 cm
Width 70 cm
Height 100 cm

The distance between two neighboring
horizontal ledgers (Lift height) 15 cm

The longitudinal spacing of vertical pole 8 cm
The transverse spacing of vertical pole 10 cm

The height of the bottom reinforcing ledger 5 cm
The angle of the diagonal brace 45◦

The number of vertical poles 49
The number of horizontal ledgers 98

Simulated defects
The distance between the 3rd and 4th horizontal

ledgers on the longitudinal middle frame 18 cm

The longitudinal spacing of the 4th and 5th vertical
pole on the longitudinal middle frame 10 cm

The transverse spacing of the 3rd and 4th vertical
pole on the transvers middle frame 12 cm
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The proposed GA-ANN model was used for predicting the simulated defects and the
coordinates of the key points. The convergence process of the proposed GA-ANN model is
displayed in Figure 19. The optimal result of the proposed GA-ANN model was obtained
after the 100th iteration. In this study, the model was able to detect all the simulated defects
and generate accurate coordinates of the key points.
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4. Case Study
4.1. Validation on a Real High Formwork

While the prior case studies show the effectiveness of the proposed method, a full
in-site test on a real high formwork was carried out to evaluate the effectiveness of the
proposed method. The dimensions of the high formwork were 5.5 m × 5.5 m × 6 m,
consisting of 49 standard poles and 70 tubes. Both longitudinal and transverse spacing
of pole are 0.8 m, while the lift height is 1.5 m. The formation of the high formwork is
shown in Figure 20. The object provided an opportunity to validate the approach on a
real structure.

As the results may have been influenced by the instrument position error between
different point clouds, a control network was adopted to ensure that the horizontal position
locates correctly within a millimetre. The error can be absorbed into +2 mm registration
errors. Several scans from different viewpoints were collected so that the workflow effi-
ciency could be evaluated in a real situation. Typically, a total of 10–15 min was spent at
each position, including setup and scan time. The georeferencing process only took 5 min
to complete. The point clouds of the high formwork are shown in Figure 21.
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4.2. Discussion of Results

Based on the proposed method, the Z planes were inserted at 5 cm interval from 1 cm
to the height of the high formwork. Next, the lines representing the individual poles or
tubes were generated. Then, the coordinates of the cross points were input the ANN model.
Both longitudinal and transverse spacing of pole and lift height (the distance between
two neighbouring ledgers) were checked. Moreover, the perpendicularity of pole and
levelness of ledger were inspected. In addition, the angle of the diagonal bracing of the
high formwork were checked. The standard error was calculated between real value and
estimates. The standard error can be calculated in Equation (9).

SE =

√
∑ (Y−Y′)2

N
, (9)

where Y is the real value, Y′ is the estimated value, and N is the number of points to estimate.
The overall accuracy is acceptable and the errors fall within the allowable tolerance range.
The results are summarized in Table 7. The results indicate that the accuracy of the
developed GA-ANN model is satisfied at the millimetre level. It can generate reliable
results in real applications.

Table 7. Summary of the predicted error by using the proposed method.

Inspection
Term

Specified
Value Error from the Proposed Method

Max Min Average Standard Error Percent of Pass

dli 800 15 3 5 4.7 95%
dti 800 13 6 5.5 5 94.3%
si 1500 16 5 7 6.8 92%

Am 60◦ 30′ 10′ 18′ 15′ 98%
Note: Am indicates the angle of diagonal bracing.

The purpose of the validation is to examine the performance of the proposed approach
dealing with real problems. Moreover, short range (about 10 m), simple scanned area,
and scanning from one position can reduce errors. Results of the validation indicate the
proposed method can detect and locate defects. Optimistically, it is capable of providing
accurate measurements at the magnitude of the millimetre level. Based on the outcomes,
the proposed method provides an effective tool for installation quality inspection for
high formwork.

Based on the cost and time evaluation, the proposed method can provide an effective
tool for quality inspection of a high formwork. The scanning time used for the inspection
at every station was only twenty minutes, which suggests the superiority of the adoption
of TLS in terms of both cost and time when compared to common methods. For example, a
GNSS-based method, which recently was suggested for use in structure monitoring and
inspection, has an error at the magnitude of the centimetre level, and requires extensive
calculation and processing [76,77]. With such an error budget, it is unacceptable for
installation quality inspection for high formwork. Moreover, to improve accuracy, it usually
requires the addition of more stations which will significantly increase operation costs.
Other methods, like unmanned aerial vehicle (UAV) imagery, are also recommended as
an effective tool for installation quality inspection for high formwork. However, based
on previous studies [78,79], it has average error of about 15mm. Moreover, it requires
sophisticated processing to extract the required information from the raw imagery. In
addition, and most importantly, considering factors such as registration errors, missing
data or mixed pixels might cause the misidentification of important elements or increase
errors in the measuring of the dimensions of high formwork.

Without the use of TLS, to safely conduct quality inspection in a cost- and time-effective
manner, and with acceptable accuracy, would prove extremely difficult and labour-intensive.
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Moreover, the data accuracy of TLS can be improved with the following suggestions: (1)
conduct the scan without impacting the line-of-sight; (2) increase scanning resolution; (3)
increase the number of scans; (4) scan the high formwork from all faces; (5) widen the range
of scan stations.

5. Conclusions

The current study highlighted the advantages of the proposed method using TLS
and ANN algorithms for installation quality inspection for a high formwork. When con-
ducting the inspection operation, the non-invasive method, along with full area coverage
measurements, are a benefit.

Adoption of the TLS uses less labour when compared to common inspection methods,
avoids any labour-related risks, and can access difficult and dangerous areas, which will
save significant money and time and greatly improve the performance of the inspection
process. The collected point cloud data can be effectively processed using the proposed
data extraction approach in this study and can rapidly extract the important elements of
the high formwork.

The conventional ANN network was optimized via GA to achieve the optimum
parameters of the ANN model including: the number of hidden layers, the number of
nodes at the hidden layers, the learning rate and the momentum coefficients. The model
performance evaluation parameters and generated result indicate that the proposed GA-
ANN model can produce accurate predictions. The generated accurate coordinates of the
important points that are the cross points of the poles and ledgers facilitate the spacing
calculation between two neighbouring of pole or lift height (the distance between two
neighbouring ledgers).

The proposed method can provide accurate results that facilitate quality inspection,
safety management and decision making on the construction site. Moreover, the collected
measurements can be kept properly, which facilitates further application in safety mon-
itoring for high formwork during concrete cast-in. In addition, the study also provides
an indication that measurements with tight tolerances can be achieved not only by using
contact methods, but that the proposed methods using TLS outputs can also generate
results with the required level of accuracy.

The benefits of the proposed method indicate that TLS can be successfully used in
quality inspection and can generate accurate measurements in terms of the quantity and
quality of the data points and timing. The measurements based on the proposed method
are similar to the set values with acceptable error, and hence confirm the suitability of the
proposed method. A successful approach for point cloud data extraction and measurements
calculation can be used for other similar structures.

Furthermore, the laser scanning system can be utilized in combination with other
techniques like photogrammetry to offer a hybrid method that can provide accurate mea-
surements of the full covering area and the points of interest. TLS measurements can also
be combined with BIM to vividly display the structure in real dimensions and state.
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Abbreviations

Acronym Meaning
AEC Architecture, Engineering & Construction
ANN Artificial Neutral Network
BP Back Propagation
BIM Building Information Modelling
CV-RMSEs Coefficient of Variation-Root Mean Square Error
GA Genetic Algorithm
GA-ANN Genetic Algorithm optimized Artificial Neutral Network
GNSS Global Navigation Satellite System
ICP Iterative Closet Point
LiDAR Light Detection and Ranging
Lr Learning rate
MAE Mean Absolute Error
MSE Mean Squared Error
Mc Momentum coefficient
Nh Number of hidden layer
Nnh Number of nodes at hidden layer
PC Predicted Coordinates
PSD Predicted Simulated Defects
RF Random Forest
RMSE Root Mean Square Error
RGB Red, Green & Blue
SE Standard Error
SVM Support Vector Machine
TLS Terrestrial Laser Scanner
UAV Unmanned Aerial Vehicle
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