59 research outputs found

    Multianalyte LC-MS-based methods in doping control: what are the implications for doping athletes?

    Get PDF
    Over the last 50 years, the list of doping substances and methods has been progressively expanding, being regularly reviewed by the international antidoping authorities (formerly the Medical Commission of the International Olympic Committee, and afterward, following its constitution in 1999, the World Anti-Doping Agency [WADA]). New substances/classes of substances have been periodically included in the list, keeping the pace with more advanced and sophisticated doping trends. At present, and apart from the prohibited performance enhancing and masking methods (e.g., blood transfusions and tampering strategies), the list comprises several hundreds of biologically active substances, with broad differences in their physicochemical properties (i.e., molecular weight, polarity and acid-basic properties) [1]. As a consequence, the ‘one class – one procedure’ approach, which had been followed by nearly all accredited antidoping laboratories worldwide until the turn of the millennium, is no longer sustainable. The need to minimize the overall number of independent analytical procedures, and, in parallel, to reduce the analytical costs, stimulated the development of multitargeted methods, aimed to increase the overall ratio of ‘target analytes: procedure’ [2–6]. The above evolution has not always been a straight forward process. The need to comply with the WADA technical requirements (both in terms of identification criteria and of minimum required performance limits [7,8]) and with the reduction of the reporting time (a constraint that becomes even more critical during international sport events, where the daily workload also drastically increases) has imposed a thorough re-planning of the analytical procedures. The development of an antidoping analytical method requires the appropriate knowledge not only of the biophysicochemical properties of the target analyte, but also of its PK profile. Historically, immunological methods and GC-based techniques were applied in antidoping science, as preferential screening methods for the detection of prohibited substances, which were originally limited to nonendogenous stimulants and narcotics. In the 1980s, GC–MS became the reference analytical platform for the detection and quantification of the majority of the low molecular weight doping substances [3–6]. In the following two decades, with the inclusion in the Prohibited List of new classes of low molecular weight, hydrophilic, thermolabile, nonvolatile analytes (including, but not limited to, glucocorticoids and designer steroids) and simultaneously of peptide hormones, scientists were obliged to design, develop, validate and apply techniques based on LC–MS/MS

    Rapid screening of beta-adrenergic agents and related compounds in human urine for anti-doping purpose using capillary electrophoresis with dynamic coating

    Get PDF
    This paper presents a capillary electrophoresis method, developed for the detection, in human urine, of beta-adrenergic agents and phenolalkylamines. The electrophoretic separation is achieved in less than 10 min and is based on the use of CEofix kit, for the dynamic capillary coating. The effects of accelerator buffer pH and separation voltage were investigated. The optimum buffer pH was found to be 2.5 for beta2-agonists and 6.2 for beta-blockers and phenoalkylamines with a separation voltage of 15 IN. Urine samples spiked with the compounds here studied were treated according to the standard procedure (SPE and evaporation to dryness) and analyzed by CE interfaced with an UV diode-array, set at 195 and 210 nm. The quantitative validation results, obtained analyzing samples at three different concentrations, show a good precision of peak areas that do not exceed 5% for intra-day assays and 10% for inter-day assays. Good linearity (r(2) > 0.995) was obtained within the 50-500 ng/mL concentration range. The qualitative validation data show a relative migration times (MTs) variation lower than 1%. The analytes were clearly distinguishable in urine, with LOD and LOQ in the range of 10-80 and 40-100 ng/mL, respectively

    Drug Use on Mont Blanc: A Study Using Automated Urine Collection

    Get PDF
    Mont Blanc, the summit of Western Europe, is a popular but demanding high-altitude ascent. Drug use is thought to be widespread among climbers attempting this summit, not only to prevent altitude illnesses, but also to boost physical and/or psychological capacities. This practice may be unsafe in this remote alpine environment. However, robust data on medication during the ascent of Mont Blanc are lacking. Individual urine samples from male climbers using urinals in mountain refuges on access routes to Mont Blanc (Goûter and Cosmiques mountain huts) were blindly and anonymously collected using a hidden automatic sampler. Urine samples were screened for a wide range of drugs, including diuretics, glucocorticoids, stimulants, hypnotics and phosphodiesterase 5 (PDE-5) inhibitors. Out of 430 samples analyzed from both huts, 35.8% contained at least one drug. Diuretics (22.7%) and hypnotics (12.9%) were the most frequently detected drugs, while glucocorticoids (3.5%) and stimulants (3.1%) were less commonly detected. None of the samples contained PDE-5 inhibitors. Two substances were predominant: the diuretic acetazolamide (20.6%) and the hypnotic zolpidem (8.4%). Thirty three samples were found positive for at least two substances, the most frequent combination being acetazolamide and a hypnotic (2.1%). Based on a novel sampling technique, we demonstrate that about one third of the urine samples collected from a random sample of male climbers contained one or several drugs, suggesting frequent drug use amongst climbers ascending Mont Blanc. Our data suggest that medication primarily aims at mitigating the symptoms of altitude illnesses, rather than enhancing performance. In this hazardous environment, the relatively high prevalence of hypnotics must be highlighted, since these molecules may alter vigilance

    Worsening of the Toxic Effects of (±) Cis -4,4′-DMAR Following Its Co-Administration with (±) Trans -4,4′-DMAR: Neuro-Behavioural, Physiological, Immunohistochemical and Metabolic Studies in Mice

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.Peer reviewedFinal Published versio

    A fast liquid chromatographic/mass spectrometric screening method for the simultaneous detection of synthetic glucocorticoids, some stimulants, anti-oestrogen drugs and synthetic anabolic steroids

    No full text
    A fast liquid chromatographic/mass spectrometric (LC/MS/MS) screening method for the detection, in urine, of synthetic glucocorticoids, stimulants (formoterol, modafinil and mesocarb), anti-oestrogens (finasteride, exemestane, anastrozole, letrozole and formestane) and synthetic anabolic steroids (stanozolol, gestrinone and tetrahydrogestrinone) is described. All these drugs (and/or their urinary metabolites) can be simultaneously extracted by a single liquid/liquid extraction step, at alkaline pH, after enzymatic hydrolysis with β-glucuronidase, and assayed in 7 min by LC/MS/MS using electrospray ionization in positive ion mode and multiple reaction monitoring as the acquisition mode. All compounds show good reproducibility of both the retention times (CV% <2%) and the relative abundances (CV% <10%). The limits of detection for the anti-oestrogens, glucocorticoids and steroids are in the range of 1-30 ng/mL, and for the stimulants are in the range of 100-200 ng/mL, thus satisfying the minimum required performance limits of the World Anti-Doping Agency. Copyright © 2006 John Wiley & Sons, Ltd

    Urinary excretion profiles of toremifene metabolites by liquid chromatography-mass spectrometry. Towards targeted analysis to relevant metabolites in doping control

    No full text
    In the present study, toremifene urinary excretion studies were evaluated in order to examine main metabolic reactions and to select target metabolites in doping control analysis. Urine samples from three female subjects were collected every 3 h for at least 15 days after the oral administration of a single dose of FarestonA (R) (60 mg). The elemental compositions of the compounds detected were determined by liquid chromatography-mass spectrometry using a time-of-flight system with accurate mass measurement. More detailed structure elucidation was obtained by monitoring the presence or absence of structure-specific ions, using product ion scan and neutral loss acquisition modes, whereas the metabolites urinary profiles were evaluated in selected reaction monitoring acquisition mode. The results showed that the main routes of phase-I modifications involved carboxylation of the chlorinated side chain, N-demethylation and hydroxylation in different positions. Fifteen metabolites were found in all subjects studied, most of them were detected for more than 10 days in the free, glucuronide and sulphate fractions, with a maximum of excretion generally after 9-22 and 34-47 h from drug administration. These metabolites can be divided in two groups: metabolites with the characteristic chlorine isotope pattern and metabolites without the characteristic chlorine isotope pattern. The most abundant and long-term compounds were the carboxylated metabolites followed by the hydroxylated metabolites. Their product ions originating after collision-induced dissociation were observed to occur prevalently in the dimethylaminoethoxy and in the chlorinated side chains. These structure-specific ions were used to design screening and confirmation procedures to positively identify toremifene administration in doping control analysis

    Surface plasmon resonance immunosensor for cortisol and cortisone determination

    No full text
    In this paper, we present a surface-plasmon-resonance-based immunosensor for the real-time detection of cortisol and cortisone levels in urine and saliva samples. The method proposed here is simple, rapid, economic, sensitive, robust, and reproducible thanks also to the special features of the polycarboxylate-hydrogel-based coatings used for the antibody immobilization. The sensor surface displays a high level of stability during repeated regeneration and affinity reaction cycles. The immunosensor shows high specificity for cortisol and cortisone; furthermore, no significant interferences from other steroids with a similar chemical structure have been observed. The suitability of the hydrogel coating for the prevention of nonspecific binding is also investigated. A good correlation is noticed between the results obtained by the proposed method and the reference liquid chromatography/tandem mass spectrometry method for the analysis of cortisol and cortisone in urine and saliva samples. Standard curves for the detection of cortisol and cortisone in saliva and urine are characterized by a detection limit less than 10 mu g l(-1), sufficiently sensitive for both clinical and forensic use

    A screening method for the simultaneous detection of glucocorticoids, diuretics, stimulants, anti-oestrogens, beta-adrenergic drugs and anabolic steroids in human urine by LC-ESI-MS/MS

    No full text
    This paper presents a general screening method, based on liquid chromatography/mass spectrometry (LC/MS), for the simultaneous detection in human urine of 72 xenobiotics (21 diuretics, 16 synthetic glucocorticoids, 17 beta-adrenergic drugs, 10 stimulants, 5 anti-oestrogens and 3 anabolic steroids), excreted free or as glucuro-conjugates in urine. Although the method has been specifically designed and evaluated in view of its potential application to anti-doping analyses, it can also be effective in other areas of analytical toxicology. Sample preparation was based on two liquid/liquid separation steps (performed at alkaline and at acid pH, respectively) of hydrolyzed human urine, and then an assay by LC/MS-MS in positive and negative ionization mode using an electrospray ionization source (ESI) and multiple reaction monitoring (MRM) as the acquisition mode. The overall time needed for an LC run was less than 15 minutes. All compounds showed good reproducibility in terms of both the retention times (CV%< 1) and the relative abundances of the diagnostic transitions (CV%< 10). The limits of detection (LOD) were in the range of 1-50 ng/mL for glucocorticoids, anti-oestrogens and steroids, and 50-500 ng/mL for diuretics, beta-adrenergic drugs and stimulants, thus satisfying the minimum required performance limits (MRPL) set by the World Anti-Doping Agency (WADA) for the accredited anti-doping laboratories
    corecore