9,402 research outputs found
Temporal evolution of mesoscopic structure of some non-Euclidean systems using a Monte Carlo model
A Monte Carlo based computer model is presented to comprehend the contrasting
observations of Mazumder et al. [Phys. Rev. Lett. 93, 255704 (2004) and Phys.
Rev. B 72, 224208 (2005)], based on neutron-scattering measurements, on
temporal evolution of effective fractal dimension and characteristic length for
hydration of cement with light and heavy water. In this context, a theoretical
model is also proposed to elucidate the same.Comment: 31 Pages, 13 Figure
Pinned Low Energy Electronic Excitation in Metal Exchanged Vanadium Oxide Nanoscrolls
We measured the optical properties of mixed valent vanadium oxide nanoscrolls
and their metal exchanged derivatives in order to investigate the charge
dynamics in these compounds. In contrast to the prediction of a metallic state
for the metal exchanged derivatives within a rigid band model, we find that the
injected charges in Mn exchanged vanadium oxide nanoscrolls are pinned.
A low-energy electronic excitation associated with the pinned carriers appears
in the far infrared and persists at low temperature, suggesting that the
nanoscrolls are weak metals in their bulk form, dominated by inhomogeneous
charge disproportionation and Madelung energy effects.Comment: 4 figure
Angular Inflation from Supergravity
We study supergravity inflationary models where inflation is produced along
the angular direction. For this we express the scalar component of a chiral
superfield in terms of the radial and the angular components. We then express
the supergravity potential in a form particularly simple for calculations
involving polynomial expressions for the superpotential and Kahler potential.
We show for a simple Polonyi model the angular direction may give rise to a
stage of inflation when the radial field is fixed to its minimum. We obtain
analytical expressions for all the relevant inflationary quantities and discuss
the possibility of supersymmetry breaking in the radial direction while
inflating by the angular component.Comment: 7 pages, one figure. Final version. Title changed, two figures
droppe
Identifying the curvaton within MSSM
We consider inflaton couplings to MSSM flat directions and the thermalization
of the inflaton decay products, taking into account gauge symmetry breaking due
to flat direction condensates. We then search for a suitable curvaton candidate
among the flat directions, requiring an early thermally induced start for the
flat direction oscillations to facilitate the necessary curvaton energy density
dominance. We demonstrate that the supersymmetry breaking -term is crucial
for achieving a successful curvaton scenario. Among the many possible
candidates, we identify the flat direction as a viable MSSM
curvaton.Comment: 9 pages. Discussion on the evaporation of condensate added, final
version published in JCA
Towards Scalable Visual Exploration of Very Large RDF Graphs
In this paper, we outline our work on developing a disk-based infrastructure
for efficient visualization and graph exploration operations over very large
graphs. The proposed platform, called graphVizdb, is based on a novel technique
for indexing and storing the graph. Particularly, the graph layout is indexed
with a spatial data structure, i.e., an R-tree, and stored in a database. In
runtime, user operations are translated into efficient spatial operations
(i.e., window queries) in the backend.Comment: 12th Extended Semantic Web Conference (ESWC 2015
A genetic algorithm based on nearest neighbour classification to breast cancer diagnosis
Copyright © 2003 ACPSEM. All rights reserved. The document attached has been archived with permission from the publisher.R. Jain and J. Mazumda
- …