79 research outputs found

    LATE MESOZOIC GRANITOIDS OF THE WESTERN TRANSBAIKALIA (RUSSIA) AND THEIR RELATION TO FORMATION OF METAMORPHIC CORE COMPLEXES

    Get PDF
    Early Cretaceous metamorphic core complexes (MCCs) are widespread in North-East Asia and indicate a large-scale crustal extension in this area [Wang et al., 2011, 2012]. Traditionally one of the formation mechanisms of MCCs is related to various magmatic activities including granitoid magmatism [Anderson et al., 1988, Hill et al., 1995; Lister, Baldwin, 1993]. Wang et al. [2012] have subdivided the intrusion associated with MCCs in NE Asia into pre-kinematic (~170–140 Ma), syn-kinematic (~150–125 Ma) and post-kinematic (~125–110 Ma). 40Ar/39Ar biotite and hornblende ages of 140–110 Ma are overlapping for all MCCs of NE Asia and represent the time of the final stage of the MCCs formation [Wang et al., 2012]. Here, we present overview of geochronological and geochemical data for Late Mesozoic granitoids of the Western Transbaikalia and our view on their role in formation of Transbaikalian MCCs.Early Cretaceous metamorphic core complexes (MCCs) are widespread in North-East Asia and indicate a large-scale crustal extension in this area [Wang et al., 2011, 2012]. Traditionally one of the formation mechanisms of MCCs is related to various magmatic activities including granitoid magmatism [Anderson et al., 1988, Hill et al., 1995; Lister, Baldwin, 1993]. Wang et al. [2012] have subdivided the intrusion associated with MCCs in NE Asia into pre-kinematic (~170–140 Ma), syn-kinematic (~150–125 Ma) and post-kinematic (~125–110 Ma). 40Ar/39Ar biotite and hornblende ages of 140–110 Ma are overlapping for all MCCs of NE Asia and represent the time of the final stage of the MCCs formation [Wang et al., 2012]. Here, we present overview of geochronological and geochemical data for Late Mesozoic granitoids of the Western Transbaikalia and our view on their role in formation of Transbaikalian MCCs

    EARLY STAGE OF THE CENTRAL ASIAN OROGENIC BELT BUILDING: EVIDENCES FROM THE SOUTHERN SIBERIAN CRATON

    Get PDF
    The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions

    Paleomagnetism of Cryogenian Kitoi mafic dykes in South Siberia: Implications for Neoproterozoic paleogeography

    Get PDF
    We present a new paleomagnetic pole of 1.1Β°N, 22.4Β°E, A95 = 7.4Β° from the 760 Ma gabbro-dolerite Kitoi dykes located in the southern part of the Siberian Craton. The pole is supported by contact tests and suggests closer position of Siberia relative to Laurentia at 760 Ma than in Mesoproterozoic. We propose that this closer configuration was achieved by dextral transpressive motion of Siberia relative to Laurentia between 780 and 760 Ma. This motion was probably initiated at the first stage of the Rodinia breakup and is coeval with the 780 Ma Gunbarrel magmatic event of the western Canadian shield

    MARBLE MÉLANGE: COMPOSITION VARIATIONS AND FORMATION MECHANISMS

    Get PDF
    The Olkhon terrane in the Western Baikal area accommodates four types of carbonate-silicate mixtures: injection (protrusion), metamorphic-boudinated, mingling, and tectonite marble mΓ©lange. The outcrops of injection mΓ©lange consist of a carbonate matrix with inclusions of native silicic rocks found in the immediate vicinities, commonly cover large areas and lack any distinct linearity in the map view. MΓ©lange of the metamorphic boudinage type comprises diopsidite and tremilote-diopsidite fragments in a dolomitic or calcite-dolomitic matrix. Its origin is apparently due to tectonism and related metamorphism of quartz sandstones in Neoproterozoic strata on the passive margin of the Siberian craton. Mingling mΓ©lange appears as calcite marble or carbonate-silicate (calciphyre) veins with metadolerite and granite inclusions of different sizes. The veins formed by intrusion of carbonate and silicate melt batches and subsequent fragmentation of silicate rocks that crystallized earlier. Marble tectonites localized in narrow zones record the late phase of ductile marble injection

    MARBLE DIKES IN THE OLKHON COMPOSITE TERRANE (WEST BAIKAL AREA)

    Get PDF
    Linear or lens-like carbonate (marble) and carbonate-silicate bodies among gabbro and amphibolites within the Krestovsky subterrane of the Olkhon composite terrane (West Baikal Area) are identified as dikes. The dikes commonly dip almost vertically, range in thickness from 20 cm to a few meters, and are up to 100 m long. The Olkhon marble dikes quite often coexist with dolerite dikes and/or granite veins and show signatures of emplacement synchronously with the igneous bodies. The marble dikes differ from mantle carbonatites in mineralogy and chemistry and thus may be derived from sedimentary carbonate rocks molten during collisional events.The origin of the Olkhon carbonate and carbonate-silicate dikes may be explained with two possible geodynamic scenarios. They may be derived either from Neoproterozoic carbonate sediments upon the Early Precambrian basement of a cratonic block which was involved in collisional events, or from abundant carbonate sedimentary material in an island-arc terrane. Large-scale melting of silicate and carbonate rocks was maintained by heat released from mantle mafic magma intruding into the lower crust. The batches of both crustal (carbonate and granitic) and mantle (mafic) melts intruded late during the collision in a strike-slip tectonic setting

    БВРУКВУРА Π—ΠžΠ›ΠžΠ’ΠžΠ Π£Π”ΠΠžΠ“Πž ΠœΠ•Π‘Π’ΠžΠ ΠžΠ–Π”Π•ΠΠ˜Π― Π“ΠžΠ›Π•Π¦ Π’Π«Π‘ΠžΠ§ΠΠ™Π¨Π˜Π™ (Π‘Π•Π’Π•Π ΠΠžΠ• Π—ΠΠ‘ΠΠ™ΠšΠΠ›Π¬Π•)

    Get PDF
    The article describes the fold-thrust structure of the Golets Vysochaishy deposit located at the Baikal-Patom Upland in the Marakan-Tunguska megasyncline. The latter is composed of terrigenous-carbonate carbonaceous rocks metamorphosed in greenschist facies conditions. The deposit is detected in the hanging wing of the asymmetric Kamenskaya anticline. In a cross section, the anticline is an S-shaped structure extending in the latitudinal direction. The main feature of the Golets Vysochaishy deposit is the development of interlayer sulfidization zones (pyrite, pyrrhotite), including gold-bearing ones. Its gold-ore zones tend to occur in layered areas of interlayer sliding in the rocks of the Khomolkhinskaya suite.Four structural markers revealed within the deposit area are indicative of repeated deformation processes: (1) sublatitudinal folding, cleavage of the axial surface and its subsequent transformation into schistosity; (2) crenulation cleavage; (3) interlayer sliding and rock breakdown with interlayer drag folds, parallel microfractures and polished slickensides; (4) large quartz veins and veinlets that cross cut the main structural elements in plan.ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ описаниС складчато-Π½Π°Π΄Π²ΠΈΠ³ΠΎΠ²ΠΎΠΉ структуры мСстороТдСния Π“ΠΎΠ»Π΅Ρ† Π’Ρ‹ΡΠΎΡ‡Π°ΠΉΡˆΠΈΠΉ, располоТСнного Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Π‘Π°ΠΉΠΊΠ°Π»ΠΎ-ΠŸΠ°Ρ‚ΠΎΠΌΡΠΊΠΎΠ³ΠΎ Π½Π°Π³ΠΎΡ€ΡŒΡ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠœΠ°Ρ€Π°ΠΊΠ°Π½ΠΎ-Вунгусской мСгасинклинали. ПослСдняя слоТСна Ρ‚Π΅Ρ€Ρ€ΠΈΠ³Π΅Π½Π½ΠΎ-ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹ΠΌΠΈ углСродистыми ΠΏΠΎΡ€ΠΎΠ΄Π°ΠΌΠΈ, ΠΌΠ΅Ρ‚Π°ΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π² условиях зСлСносланцСвой Ρ„Π°Ρ†ΠΈΠΈ. ΠœΠ΅ΡΡ‚ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Π² висячСм ΠΊΡ€Ρ‹Π»Π΅ асиммСтричной КамСнской Π°Π½Ρ‚ΠΈΠΊΠ»ΠΈΠ½Π°Π»ΠΈ S-ΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π² ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌ сСчСнии, ΠΏΡ€ΠΎΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉΡΡ Π² ΡˆΠΈΡ€ΠΎΡ‚Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ. Π“Π»Π°Π²Π½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ мСстороТдСния Π“ΠΎΠ»Π΅Ρ† Π’Ρ‹ΡΠΎΡ‡Π°ΠΉΡˆΠΈΠΉ являСтся Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ мСТслоСвых Π·ΠΎΠ½ ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ (ΠΏΠΈΡ€ΠΈΡ‚, ΠΏΠΈΡ€Ρ€ΠΎΡ‚ΠΈΠ½), Π² Ρ‚ΠΎΠΌ числС ΠΈ золотоносных. Π—ΠΎΠ»ΠΎΡ‚ΠΎΡ€ΡƒΠ΄Π½Ρ‹Π΅ Ρ‚Π΅Π»Π° Ρ‚ΡΠ³ΠΎΡ‚Π΅ΡŽΡ‚ ΠΊ послойным Π·ΠΎΠ½Π°ΠΌ мСТслоСвого скольТСния Π² ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ… Π₯омолхинской свиты.Π’ ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… мСстороТдСния установлСны Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ структурных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°, ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π½Π° Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… процСссов: 1) Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ складчатости ΡΡƒΠ±ΡˆΠΈΡ€ΠΎΡ‚Π½ΠΎΠΉ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²ΠΊΠΈ, ΠΊΠ»ΠΈΠ²Π°ΠΆΠ° осСвой повСрхности ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ Π΅Π³ΠΎ трансформированиС Π² ΡΠ»Π°Π½Ρ†Π΅Π²Π°Ρ‚ΠΎΡΡ‚ΡŒ; 2) Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ крСнуляционного ΠΊΠ»ΠΈΠ²Π°ΠΆΠ°; 3) мСТслоСвыС ΠΏΠΎΠ΄Π²ΠΈΠΆΠΊΠΈ (срывы), ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΠ΅ΡΡ мСТслоСвыми складками волочСния, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€Π΅Ρ‰ΠΈΠ½Π°ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π·Π΅Ρ€ΠΊΠ°Π»Π°ΠΌΠΈ скольТСния; 4) Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΊΠ²Π°Ρ€Ρ†Π΅Π²Ρ‹Ρ… ΠΆΠΈΠ» ΠΈ ΠΏΡ€ΠΎΠΆΠΈΠ»ΠΊΠΎΠ², Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… сСкущСС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ основным плоскостным структурным элСмСнтам

    Microfossils of the late proterozoic debengdinskaya formation of the olenekskiy uplift

    Get PDF
    Microfossils from the Middle Riphean Debengdinskaya formation of the Olenekskiy uplift have been studied. Various stenoorganic forms of acritarchs and cyanobacteries are described. Morphological groups which are preliminary compared with large flora taxons are allocated among acritarchs : brown and green seaweed, mushrooms, seaweed located in symbiotic relations (?) with cyanobionts. The prematurity of radical conclusions about age of the deposit based on majority of Proterozoic microfossils is underline

    Π“Π•ΠžΠ₯ИМИЯ И Π’ΠžΠ—Π ΠΠ‘Π’ ΠŸΠžΠ ΠžΠ” ΠΠ˜Π–ΠΠ˜Π₯ ΠŸΠ›ΠΠ‘Π’Π˜Π Π‘Π£Π’Π£Π›Π˜Π™Π-ΠΠ£Π Π‘ΠšΠžΠ“Πž И Π—ΠΠ“ΠΠΠ‘ΠšΠžΠ“Πž ΠšΠžΠœΠŸΠ›Π•ΠšΠ‘ΠžΠ’ ΠœΠ•Π’ΠΠœΠžΠ Π€Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π―Π”Π•Π  (БЕВЕРНАЯ ΠœΠžΠΠ“ΠžΠ›Π˜Π― – Π—ΠΠŸΠΠ”ΠΠžΠ• Π—ΠΠ‘ΠΠ™ΠšΠΠ›Π¬Π•)

    Get PDF
    This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC) and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma) in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma) igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (178–152 Ma) of the Naushki and Verhnemangirtui massifs. In the footwall of the Butuliyn-Nur and Zagan MCC, the most common are granitoids and felsic volcanic rocks (249–211 Ma) with many similar geochemical characteristics, such as high alkalinity, high contents of Sr and Ba, moderate and low concentrations of Nb and Y. Considering the contents of trace elements and REE, the granitoids and the felsic volcanic rocks are similar to I-type granites. Specific compositions of these rocks suggest that they might have formed in conditions of the active continental margin of the Siberian continent over the subducting oceanic plate of the Mongol-Okhotsk Ocean. The granitoids of the Naushki and Verhnemangirtui massifs, which are the youngest of the studied rocks (178–152 Ma), also have similar geochemical characteristics. In both massif, granitoids are ferriferous, mostly alkaline rocks. By contents of both major and trace elements, they are comparable to A-type granites. Such granitoids formed in conditions of intracontinental extension while subduction was replaced by collision. Based on ages and geochemical characteristics of the rocks in the footwall of the Butuliyn-Nur and Zagan MCC, a good correlation is revealed between the studied rocksΒ  and the rock complexes of the Transbaikalian and North-Mongolian segments of the Central Asian fold belt (CAFB), and it can thus be suggested that the regions under study may have a common evolutionary history.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводится ΠΎΠ±Π·ΠΎΡ€ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ возрасту ΠΏΠΎΡ€ΠΎΠ΄ Π½ΠΈΠΆΠ½ΠΈΡ… пластин Π‘ΡƒΡ‚ΡƒΠ»ΠΈΠΉΠ½-Нурского ΠΈ Заганского комплСксов мСтаморфичСских ядСр (КМЯ), Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½ΠΎΠ²Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ Π³Π΅ΠΎΡ…ΠΈΠΌΠΈΠΈ этих ΠΏΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… комплСксов. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ самыми Π΄Ρ€Π΅Π²Π½ΠΈΠΌΠΈ ΠΏΠΎΡ€ΠΎΠ΄Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠΈΠ»ΠΎΠ½ΠΈΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ гнСйсы ΠΏΠΎ Ρ€ΠΈΠΎΠ»ΠΈΡ‚Π°ΠΌ (554 ΠΌΠ»Π½ Π»Π΅Ρ‚) Π½ΠΈΠΆΠ½Π΅ΠΉ пластины Π‘ΡƒΡ‚ΡƒΠ»ΠΈΠΉΠ½-Нурского КМЯ. МаксимальноС распространСниС срСди ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½ΠΈΠΆΠ½ΠΈΡ… пластин Π‘ΡƒΡ‚ΡƒΠ»ΠΈΠΉΠ½-Нурского ΠΈ Заганского КМЯ ΠΈΠΌΠ΅ΡŽΡ‚ позднСпСрмскиС – триасовыС (249–211 ΠΌΠ»Π½ Π»Π΅Ρ‚) магматичСскиС ΠΏΠΎΡ€ΠΎΠ΄Ρ‹. Π‘Π°ΠΌΡ‹ΠΌΠΈ ΠΌΠΎΠ»ΠΎΠ΄Ρ‹ΠΌΠΈ ΠΏΠΎΡ€ΠΎΠ΄Π°ΠΌΠΈ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… КМЯ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄Ρ‹ ΡŽΡ€ΡΠΊΠΎΠ³ΠΎ возраста (178–152 ΠΌΠ»Π½ Π»Π΅Ρ‚) ΠΠ°ΡƒΡˆΠΊΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΈ ВСрхнСмангиртуйского массивов. НаиболСС распространСнныС срСди Π½ΠΈΠΆΠ½ΠΈΡ… пластин Π‘ΡƒΡ‚ΡƒΠ»ΠΈΠΉΠ½-Нурского ΠΈ Заганского КМЯ Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄Ρ‹ ΠΈ Π²ΡƒΠ»ΠΊΠ°Π½ΠΈΡ‚Ρ‹ кислого состава с возрастом 249–211 ΠΌΠ»Π½ Π»Π΅Ρ‚ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ сходныС гСохимичСскиС характСристики (ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Π°Ρ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, высокиС содСрТания Sr ΠΈ Ba, ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Π΅ ΠΈ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Nb, Y). По содСрТаниям Ρ€Π΅Π΄ΠΊΠΈΡ… ΠΈ Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π΄Π°Π½Π½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄Ρ‹ ΠΈ Π²ΡƒΠ»ΠΊΠ°Π½ΠΈΡ‚Ρ‹ кислого состава ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ сходство с Π³Ρ€Π°Π½ΠΈΡ‚Π°ΠΌΠΈ I-Ρ‚ΠΈΠΏΠ°. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ составов этих ΠΏΠΎΡ€ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π΄ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒ ΠΈΡ… Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π² обстановкС Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠΊΡ€Π°ΠΈΠ½Ρ‹ Бибирского ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π° Π½Π°Π΄ ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉΡΡ окСаничСской ΠΏΠ»ΠΈΡ‚ΠΎΠΉ Монголо-ΠžΡ…ΠΎΡ‚ΡΠΊΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. НаиболСС ΠΌΠΎΠ»ΠΎΠ΄Ρ‹Π΅ ΠΈΠ· ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄Ρ‹ ΠΠ°ΡƒΡˆΠΊΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΈ ВСрхнСмангиртуйского массивов с возрастом 178–152 ΠΌΠ»Π½ Π»Π΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ сходными гСохимичСскими характСристиками. Π“Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄Ρ‹ ΠΎΠ±ΠΎΠΈΡ… массивов ΡΠ²Π»ΡΡŽΡ‚ΡΡ ТСлСзистыми, прСимущСствСнно Ρ‰Π΅Π»ΠΎΡ‡Π½Ρ‹ΠΌΠΈ образованиями. По содСрТаниям ΠΊΠ°ΠΊ ΠΏΠ΅Ρ‚Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ Ρ€Π΅Π΄ΠΊΠΈΡ… элСмСнтов ΠΎΠ½ΠΈ сопоставимы с Π³Ρ€Π°Π½ΠΈΡ‚Π°ΠΌΠΈ А-Ρ‚ΠΈΠΏΠ°. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ этих Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄ΠΎΠ² ΠΈΠΌΠ΅Π»ΠΎ мСсто Π² условиях Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ растяТСния Π½Π° Ρ„ΠΎΠ½Π΅ смСны субдукционного Ρ€Π΅ΠΆΠΈΠΌΠ° Π½Π° ΠΊΠΎΠ»Π»ΠΈΠ·ΠΈΠΎΠ½Π½Ρ‹ΠΉ. РассмотрСнныС Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΏΠΎ возрасту ΠΈ Π³Π΅ΠΎΡ…ΠΈΠΌΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ΄ Π½ΠΈΠΆΠ½ΠΈΡ… пластин Π‘ΡƒΡ‚ΡƒΠ»ΠΈΠΉΠ½-Нурского ΠΈ Заганского КМЯ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ эти ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ с ΠΏΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ комплСксами забайкальского ΠΈ сСвСро-монгольского сСгмСнтов ЦАБП, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡ ΠΎ Π΅Π΄ΠΈΠ½ΠΎΠΉ истории ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ всСго этого Ρ€Π΅Π³ΠΈΠΎΠ½Π°.

    Π”ΠΠ™ΠšΠ˜ ΠœΠ ΠΠœΠžΠ ΠžΠ’ И ΠšΠΠ›Π¬Π¦Π˜Π€Π˜Π ΠžΠ’ ΠžΠ›Π¬Π₯ΠžΠΠ‘ΠšΠžΠ“Πž ΠšΠžΠœΠŸΠžΠ—Π˜Π’ΠΠžΠ“Πž ВЕРРЕЙНА (Π—ΠΠŸΠΠ”ΠΠžΠ• ΠŸΠ Π˜Π‘ΠΠ™ΠšΠΠ›Π¬Π•, РОББИЯ)

    Get PDF
    Linear or lens-like carbonate (marble) and carbonate-silicate bodies among gabbro and amphibolites within the Krestovsky subterrane of the Olkhon composite terrane (West Baikal Area) are identified as dikes. The dikes commonly dip almost vertically, range in thickness from 20 cm to a few meters, and are up to 100 m long. The Olkhon marble dikes quite often coexist with dolerite dikes and/or granite veins and show signatures of emplacement synchronously with the igneous bodies. The marble dikes differ from mantle carbonatites in mineralogy and chemistry and thus may be derived from sedimentary carbonate rocks molten during collisional events.The origin of the Olkhon carbonate and carbonate-silicate dikes may be explained with two possible geodynamic scenarios. They may be derived either from Neoproterozoic carbonate sediments upon the Early Precambrian basement of a cratonic block which was involved in collisional events, or from abundant carbonate sedimentary material in an island-arc terrane. Large-scale melting of silicate and carbonate rocks was maintained by heat released from mantle mafic magma intruding into the lower crust. The batches of both crustal (carbonate and granitic) and mantle (mafic) melts intruded late during the collision in a strike-slip tectonic setting.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ даСтся характСристика Π΄Π°Π΅ΠΊ ΠΌΡ€Π°ΠΌΠΎΡ€ΠΎΠ² ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ„ΠΈΡ€ΠΎΠ² Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠžΠ»ΡŒΡ…ΠΎΠ½ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚Π΅Ρ€Ρ€Π΅ΠΉΠ½Π° (Π—Π°ΠΏΠ°Π΄Π½ΠΎΠ΅ ΠŸΡ€ΠΈΠ±Π°ΠΉΠΊΠ°Π»ΡŒΠ΅). НадСТно обоснована дайковая ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΈ Π»ΠΈΠ½Π·ΠΎΠ²ΠΈΠ΄Π½Ρ‹Ρ… Ρ‚Π΅Π» ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ Π² массивах Π³Π°Π±Π±Ρ€ΠΎ ΠΈ ΠΎΡ€Ρ‚ΠΎΠ°ΠΌΡ„ΠΈΠ±ΠΎΠ»ΠΈΡ‚Π°Ρ… ΠšΡ€Π΅ΡΡ‚ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ субтСррСйна. ΠŸΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΡΡƒΠ±Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°ΠΉΠΊΠΈ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΡ‚ 20 см Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΡ€ΠΈ прослСТСнной протяТСнности, ΠΈΠ½ΠΎΠ³Π΄Π° ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰Π΅ΠΉ 100 ΠΌ. НСрСдко ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹Π΅ Π΄Π°ΠΉΠΊΠΈ Π°ΡΡΠΎΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‚ с Π΄Π°ΠΉΠΊΠ°ΠΌΠΈ Π΄ΠΎΠ»Π΅Ρ€ΠΈΡ‚ΠΎΠ² ΠΈ/ΠΈΠ»ΠΈ ΠΆΠΈΠ»Π°ΠΌΠΈ Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠ² с ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ субсинхронного внСдрСния. По ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ³ΠΎ-гСохимичСским особСнностям ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°ΠΉΠΊΠΈ Ρ€Π΅Π·ΠΊΠΎ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΈΡ‚ΠΎΠ² ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½ΠΎΠ³ΠΎ гСнСзиса ΠΈ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ плавлСния ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ-осадочных ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹Ρ… Ρ‚ΠΎΠ»Ρ‰ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΊΠΎΠ»Π»ΠΈΠ·ΠΈΠΎΠ½Π½Ρ‹Ρ… процСссов.ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ модСль образования ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹Ρ… Π΄Π°Π΅ΠΊ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° раннСдокСмбрийского Π±Π»ΠΎΠΊΠ° с ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ нСопротСрозойскими ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹ΠΌΠΈ осадками Π² процСссС ΠΊΠΎΠ»Π»ΠΈΠ·ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚Π΅Ρ€Ρ€Π΅ΠΉΠ½Π° с Бибирским ΠΊΡ€Π°Ρ‚ΠΎΠ½ΠΎΠΌ. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠΌ являСтся присутствиС Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹Ρ… Ρ‚ΠΎΠ»Ρ‰ Π² островодуТном Ρ€Π°Π·Ρ€Π΅Π·Π΅. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, связанноС с Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½Ρ‹Ρ… ΠΌΠ°Π³ΠΌ Π±Π°Π·ΠΈΡ‚ΠΎΠ²ΠΎΠ³ΠΎ состава Π² Π½ΠΈΠΆΠ½ΠΈΠ΅ части ΠΊΠΎΡ€Ρ‹, наряду с ΡƒΡ‚ΠΎΠ»Ρ‰Π΅Π½ΠΈΠ΅ΠΌ послСднСй, обусловило массовоС ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈΠ΅ силикатных ΠΏΠΎΡ€ΠΎΠ΄ Π°Π½Ρ…ΠΈΠ³Ρ€Π°Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ состава ΠΈ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠ². Π’ процСссС Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΌΠΎΡ‰Π½ΠΎ проявлСнного сдвигового Ρ‚Π΅ΠΊΡ‚ΠΎΠ³Π΅Π½Π΅Π·Π° происходило Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€Ρ†ΠΈΠΉ Π³Ρ€Π°Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΈ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ состава, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½Ρ‹Ρ… Π±Π°Π·ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Π³ΠΌ
    • …
    corecore