33 research outputs found
Placental vessel segmentation and registration in fetoscopy: Literature review and MICCAI FetReg2021 challenge findings
Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood exchange among twins. The procedure is particularly challenging, from the surgeon’s side, due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility due to amniotic fluid turbidity, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation of pathological anastomoses, resulting in persistent TTTS. Computer-assisted intervention (CAI) can provide TTTS surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge, we released the first large-scale multi-center TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms with a focus on creating drift-free mosaics from long duration fetoscopy videos. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips of an average length of 411 frames for developing placental scene segmentation and frame registration for mosaicking techniques. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. For the segmentation task, overall baseline performed was the top performing (aggregated mIoU of 0.6763) and was the best on the vessel class (mIoU of 0.5817) while team RREB was the best on the tool (mIoU of 0.6335) and fetus (mIoU of 0.5178) classes. For the registration task, overall the baseline performed better than team SANO with an overall mean 5-frame SSIM of 0.9348. Qualitatively, it was observed that team SANO performed better in planar scenarios, while baseline was better in non-planner scenarios. The detailed analysis showed that no single team outperformed on all 6 test fetoscopic videos. The challenge provided an opportunity to create generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge, alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-center fetoscopic data, we provide a benchmark for future research in this field
Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation
Open international challenges are becoming the de facto standard for
assessing computer vision and image analysis algorithms. In recent years, new
methods have extended the reach of pulmonary airway segmentation that is closer
to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation,
limited effort has been directed to quantitative comparison of newly emerged
algorithms driven by the maturity of deep learning based approaches and
clinical drive for resolving finer details of distal airways for early
intervention of pulmonary diseases. Thus far, public annotated datasets are
extremely limited, hindering the development of data-driven methods and
detailed performance evaluation of new algorithms. To provide a benchmark for
the medical imaging community, we organized the Multi-site, Multi-domain Airway
Tree Modeling (ATM'22), which was held as an official challenge event during
the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed
pulmonary airway annotation, including 500 CT scans (300 for training, 50 for
validation, and 150 for testing). The dataset was collected from different
sites and it further included a portion of noisy COVID-19 CTs with ground-glass
opacity and consolidation. Twenty-three teams participated in the entire phase
of the challenge and the algorithms for the top ten teams are reviewed in this
paper. Quantitative and qualitative results revealed that deep learning models
embedded with the topological continuity enhancement achieved superior
performance in general. ATM'22 challenge holds as an open-call design, the
training data and the gold standard evaluation are available upon successful
registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/.
Submitte
Hunting imaging biomarkers in pulmonary fibrosis: Benchmarks of the AIIB23 challenge
Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers
Fetal Brain Tissue Annotation and Segmentation Challenge Results
In-utero fetal MRI is emerging as an important tool in the diagnosis and
analysis of the developing human brain. Automatic segmentation of the
developing fetal brain is a vital step in the quantitative analysis of prenatal
neurodevelopment both in the research and clinical context. However, manual
segmentation of cerebral structures is time-consuming and prone to error and
inter-observer variability. Therefore, we organized the Fetal Tissue Annotation
(FeTA) Challenge in 2021 in order to encourage the development of automatic
segmentation algorithms on an international level. The challenge utilized FeTA
Dataset, an open dataset of fetal brain MRI reconstructions segmented into
seven different tissues (external cerebrospinal fluid, grey matter, white
matter, ventricles, cerebellum, brainstem, deep grey matter). 20 international
teams participated in this challenge, submitting a total of 21 algorithms for
evaluation. In this paper, we provide a detailed analysis of the results from
both a technical and clinical perspective. All participants relied on deep
learning methods, mainly U-Nets, with some variability present in the network
architecture, optimization, and image pre- and post-processing. The majority of
teams used existing medical imaging deep learning frameworks. The main
differences between the submissions were the fine tuning done during training,
and the specific pre- and post-processing steps performed. The challenge
results showed that almost all submissions performed similarly. Four of the top
five teams used ensemble learning methods. However, one team's algorithm
performed significantly superior to the other submissions, and consisted of an
asymmetrical U-Net network architecture. This paper provides a first of its
kind benchmark for future automatic multi-tissue segmentation algorithms for
the developing human brain in utero.Comment: Results from FeTA Challenge 2021, held at MICCAI; Manuscript
submitte
A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
Diffusion-weighted MRI (DWI) is essential for stroke diagnosis, treatment
decisions, and prognosis. However, image and disease variability hinder the
development of generalizable AI algorithms with clinical value. We address this
gap by presenting a novel ensemble algorithm derived from the 2022 Ischemic
Stroke Lesion Segmentation (ISLES) challenge. ISLES'22 provided 400 patient
scans with ischemic stroke from various medical centers, facilitating the
development of a wide range of cutting-edge segmentation algorithms by the
research community. Through collaboration with leading teams, we combined
top-performing algorithms into an ensemble model that overcomes the limitations
of individual solutions. Our ensemble model achieved superior ischemic lesion
detection and segmentation accuracy on our internal test set compared to
individual algorithms. This accuracy generalized well across diverse image and
disease variables. Furthermore, the model excelled in extracting clinical
biomarkers. Notably, in a Turing-like test, neuroradiologists consistently
preferred the algorithm's segmentations over manual expert efforts,
highlighting increased comprehensiveness and precision. Validation using a
real-world external dataset (N=1686) confirmed the model's generalizability.
The algorithm's outputs also demonstrated strong correlations with clinical
scores (admission NIHSS and 90-day mRS) on par with or exceeding expert-derived
results, underlining its clinical relevance. This study offers two key
findings. First, we present an ensemble algorithm
(https://github.com/Tabrisrei/ISLES22_Ensemble) that detects and segments
ischemic stroke lesions on DWI across diverse scenarios on par with expert
(neuro)radiologists. Second, we show the potential for biomedical challenge
outputs to extend beyond the challenge's initial objectives, demonstrating
their real-world clinical applicability
Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results
Segmentation is a critical step in analyzing the developing human fetal
brain. There have been vast improvements in automatic segmentation methods in
the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge
2021 helped to establish an excellent standard of fetal brain segmentation.
However, FeTA 2021 was a single center study, and the generalizability of
algorithms across different imaging centers remains unsolved, limiting
real-world clinical applicability. The multi-center FeTA Challenge 2022 focuses
on advancing the generalizability of fetal brain segmentation algorithms for
magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained
images and corresponding manually annotated multi-class labels from two imaging
centers, and the testing data contained images from these two imaging centers
as well as two additional unseen centers. The data from different centers
varied in many aspects, including scanners used, imaging parameters, and fetal
brain super-resolution algorithms applied. 16 teams participated in the
challenge, and 17 algorithms were evaluated. Here, a detailed overview and
analysis of the challenge results are provided, focusing on the
generalizability of the submissions. Both in- and out of domain, the white
matter and ventricles were segmented with the highest accuracy, while the most
challenging structure remains the cerebral cortex due to anatomical complexity.
The FeTA Challenge 2022 was able to successfully evaluate and advance
generalizability of multi-class fetal brain tissue segmentation algorithms for
MRI and it continues to benchmark new algorithms. The resulting new methods
contribute to improving the analysis of brain development in utero.Comment: Results from FeTA Challenge 2022, held at MICCAI; Manuscript
submitted. Supplementary Info (including submission methods descriptions)
available here: https://zenodo.org/records/1062864
Self-supervised Advanced Deep Learning for Characterization of Brain Tumor Aggressiveness and Prognosis Analysis Through Multimodality MRI Imaging
La detecció precoç, la delimitació automàtica i l'estimació del volum són tasques vitals per a la predicció de la supervivència i la planificació del tractament dels pacients amb tumor cerebral. Tanmateix, els gliomes sovint són difícils de localitzar i delimitar amb la segmentació manual convencional a causa de la seva gran variació de forma, ubicació i aparença. A més, la delimitació manual de marques és un treball laboriós i que requereix temps per a un neurocirurgià. A més, és difícil replicar els resultats de la segmentació a causa de certs factors de funcionament pràctic. En els últims anys, les xarxes neuronals de convolució (CNN) s'utilitzen àmpliament per a la classificació i segmentació automatitzada d'imatges mèdiques. Per tant, l'objectiu de la present tesi és desenvolupar un sistema per automatitzar l'anàlisi de tumors cerebrals (com la segmentació de tumors cerebrals i la predicció de supervivència), utilitzant tècniques d'aprenentatge profund i aplicant-les a les imatges de ressonància magnètica per segmentar les classes de tumors cerebrals (Enhancing Tumor). , Tumor no millorant i Edema peritumoral) i estimant els dies de supervivència dels pacients per a l'anàlisi del pronòstic. En aquest estudi, es van dissenyar i provar diversos models d'aprenentatge profund basats en 2D i 3D per a la segmentació del tumor cerebral multiclasse i la predicció de supervivència dels pacients amb tumor cerebral. Vam proposar un model CNN 2D (BrainSeg-DCANet) i després vam proposar una xarxa residual d'inici profunda 2D multivista (axial, sagital i coronal) per a la segmentació del tumor cerebral. A partir de llavors, es va introduir un aprenentatge contrastiu autosupervisat en dues etapes basat en CNN en 3D mitjançant transformadors CNN basats en l'atenció multiescala en paral·lel per a la segmentació volumètrica del tumor cerebral en 3D. Finalment, es va realitzar una predicció de supervivència basada en imatges de RM en 3D. S'utilitzen tècniques d'extracció de múltiples característiques per extreure les característiques de la imatge de ressonància magnètica volumètrica 3D i després s'apliquen diferents tècniques de regressió a les característiques extretes. Les troballes de la tesi van demostrar que les tècniques proposades poden produir una eina assistida per ordinador clínicament útil per a la segmentació dLa detección temprana, la delimitación automática y la estimación del volumen son tareas vitales para la predicción de la supervivencia y la planificación del tratamiento de los pacientes con tumores cerebrales. Sin embargo, los gliomas a menudo son difíciles de localizar y delinear con la segmentación manual convencional debido a su gran variación de forma, ubicación y apariencia. Además, la delineación manual de marcas es un trabajo laborioso y lento para un neurocirujano. Además, es difícil replicar los resultados de la segmentación debido a ciertos factores prácticos de operación. En los últimos años, las redes neuronales de convolución (CNN) se utilizan ampliamente para la clasificación y segmentación automatizadas de imágenes médicas. Por lo tanto, el objetivo de la presente tesis es desarrollar un sistema para automatizar el análisis de tumores cerebrales (como la segmentación de tumores cerebrales y la predicción de supervivencia), utilizando técnicas de aprendizaje profundo y aplicándolas a las imágenes de resonancia magnética para segmentar las clases de tumores cerebrales (Enhancing Tumor , Tumor sin realce y Edema peritumoral) y estimar los días de supervivencia de los pacientes para el análisis pronóstico. En este estudio, se diseñaron y probaron varios modelos de aprendizaje profundo basados en 2D y 3D para la segmentación de tumores cerebrales de clases múltiples y la predicción de supervivencia de los pacientes con tumores cerebrales. Propusimos un modelo CNN 2D (BrainSeg-DCANet) y luego propusimos una red residual de inicio profundo multivista 2D (axial, sagital y coronal) para la segmentación de tumores cerebrales. A partir de entonces, se introdujo un aprendizaje contrastivo autosupervisado de dos etapas basado en CNN en 3D que utiliza transformadores de CNN basados en la atención de múltiples escalas y vistas múltiples paralelas para la segmentación volumétrica de tumores cerebrales en 3D. Finalmente, se realizó una predicción de supervivencia basada en imágenes de RM 3D. Se utilizan múltiples técnicas de extracción de características para extraer las características de la imagen de resonancia magnética volumétrica 3D y luego se aplican diferentes técnicas de regresión a las características extraídas. Los hallazgos de la tesis mostraron que las técnicas propuestas pueden producir una hEarly detection, automatic delineation, and volume estimation are vital tasks for survival prediction and treatment planning of brain tumor patients. However, gliomas are often difficult to localize and delineate with conventional manual segmentation due to their high variation of shape, location, and appearance. Moreover, manual mark delineation is laborious and time-consuming work for a neurosurgeon. In addition, it is difficult to replicate the segmentation results due to certain practical operation factors. In recent years, convolution neural networks (CNNs) are widely used for the automated classification and segmentation of medical images. Therefore, the focus of the present thesis is to develop a system for automating brain tumor analysis (such as brain tumor segmentation, and survival prediction), using deep learning techniques and applying them to the MRI images for segmenting the brain tumor classes (Enhancing Tumor, Non-enhancing Tumor, and Peritumoral Edema) and estimating the survival days of the patients for prognosis analysis. In this study, various 2D and 3D based deep learning models were designed and tested for the multi-class brain tumor segmentation and survival prediction of the brain tumor patients. We proposed a 2D CNN model (BrainSeg-DCANet) then we proposed a 2D multiview (axial, sagittal, and coronal) deep inception residual network for brain tumor segmentation. Thereafter, a 3D CNN based Two-stage Self-supervised Contrastive Learning using Parallel Multiview Multiscale Attention-based CNN Transformers for 3D brain tumor volumetric segmentation was introduced. Finally, a 3D MR image-based survival prediction was performed. Multiple feature extraction techniques are used to extract the features from the 3D volumetric MRI image and then different regression techniques are applied to the extracted features. The thesis’s findings showed that the proposed techniques can produce a clinically helpful computer-aided tool for brain tumor segmentation and survival prediction by MRI Images
EEG-based Effective Connectivity Analysis with Graph Theory Approach for Cognitive Load Assessment of Multimedia Learning in Adults
This dissertation presents the cognitive load assessment of multimedia learning content using Electroencephalography (EEG) based effective connectivity approach with graph theory network analysis. Cognitive load assessment during multimedia learning has a key role in understanding the complexity of multimedia-based learning tasks. The widely-used methods for assessing the cognitive load in EEG are the traditional feature extraction techniques such as power spectral density and entropies
EEG-based Effective Connectivity Analysis with Graph Theory Approach for Cognitive Load Assessment of Multimedia Learning in Adults
This dissertation presents the cognitive load assessment of multimedia learning content using Electroencephalography (EEG) based effective connectivity approach with graph theory network analysis. Cognitive load assessment during multimedia learning has a key role in understanding the complexity of multimedia-based learning tasks. The widely-used methods for assessing the cognitive load in EEG are the traditional feature extraction techniques such as power spectral density and entropies