4 research outputs found

    Indeterminate thyroid cytology: Detecting malignancy using analysis of nuclear images

    Get PDF
    Background: Thyroid nodules diagnosed as 'atypia of undetermined significance/ follicular lesion of undetermined significance' (AUS/FLUS) or 'follicular neoplasm/ suspected follicular neoplasm' (FN/SFN), according to Bethesda’s classification, represena challenge in clinical practice. Computerized analysis of nuclear images (CANI) could be a useful tool for these cases. Our aim was to evaluate the ability of CANI to correctly classify AUS/FLUS and FN/SFN thyroid nodules for malignancy. Methods: We studied 101 nodules cytologically classified as AUS/FLUS (n = 68) or FN/SFN (n = 33) from 97 thyroidectomy patients. Slides with cytological material were submitted for manual selection and analysis of the follicular cell nuclei for morphometric and texture parameters using ImageJ software. The histologically benign and malignant lesions were compared for such parameters which were then evaluated for the capacity to predict malignancy using the classification and regression trees gini model. The intraclass coefficient of correlation was used to evaluate method reproducibility. Results: In AUS/FLUS nodule analysis, the benign and malignant nodules differed for entropy (P < 0.05), while the FN/SFN nodules differed for fractal analysis, coefficient of variation (CV) of roughness, and CV-entropy (P < 0.05). Considering the AUS/FLUS and FN/SFN nodules separately, it correctly classified 90.0 and 100.0% malignant nodules, with a correct global classification of 94.1 and 97%, respectively. We observed that reproducibility was substantially or nearly complete (0.61–0.93) in 10 of the 12 nuclear parameters evaluated. Conclusion: CANI demonstrated a high capacity for correctly classifying AUS/FLUS and FN/SFN thyroid nodules for malignancy. This could be a useful method to help increase diagnostic accuracy in the indeterminate thyroid cytology.This study received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; processes number 2016/14987-0 and number 2016/14988-6). Further funding through 'Fundação para a Ciência e Tecnologi' – FCT and FEDER 'Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020'; by Operacional Programme for Competitiveness and Internationalization 'POCI' (Grant no. POCI-01-0145-FEDER-007274); by the 'Advancing cancer research: from basic knowledge to application' (grant no. NORTE-01-0145-FEDER-000029); and by the 'Projetos Estruturados de I & D & I', funded by Norte 2020 – Programa Operacional Regional do Norte

    Thyroid Cytology: Is FNA Still the Best Diagnostic Approach?

    No full text

    Thyroid cell proliferation in Graves' disease - Use of MIB-1 monoclonal antibody

    No full text
    OBJECTIVE: To measure thyroid cell proliferation in patients with Graves' disease (GD) before and during treatment with antithyroid drugs.STUDY DESIGN: Patients were assessed by fine needle aspiration biopsy before (n=20) and after 4 (n=19) and 12 months of treatment (n=15) with propylthiouracil or methimazole. Cell proliferation index (CPI) was estimated by immunocytochemistry using MIB-1. CPI was studied in relation to the cytologic parameters of the smears; clinical parameters, such as Wayne's Clinical Index (WCI) and time without treatment; laboratory parameters, such as (131)Iuptake and dosage of serum free thyroxin and thyroid-stimulating hormone; and thyroid ultrasound.RESULTS: CPI varied from 0.00% to 25.00% before treatment, 0.00% to 23.00% at 4 months and 0.00% to 14.84% at 12 months. CPI median values were 6.50%, 4.30% and 3.30%, respectively (before and after 4 months and 12 months of treatment). CPI had a positive correlation with WCI and FT4 at 12 months of treatment.CONCLUSION: Thyroid CPI in GD varies from case to case. However, due to its decreasing pattern during follow-up and its positive correlation with thyrotoxicosis severity, CPI may indicate the functional status of the gland and contribute to a better understanding of GD
    corecore