7 research outputs found

    Novel Hybrid Data-Intelligence Model for Forecasting Monthly Rainfall with Uncertainty Analysis

    Get PDF
    In this research, three different evolutionary algorithms (EAs), namely, particle swarm optimization (PSO), genetic algorithm (GA) and differential evolution (DE), are integrated with the adaptive neuro-fuzzy inference system (ANFIS) model. The developed hybrid models are proposed to forecast rainfall time series. The capability of the proposed evolutionary hybrid ANFIS was compared with the conventional ANFIS in forecasting monthly rainfall for the Pahang watershed, Malaysia. To select the optimal model, sixteen different combinations of six different lag attributes taking into account the effect of monthly, seasonal, and annual history were considered. The performances of the forecasting models were assessed using various forecasting skill indicators. Moreover, an uncertainty analysis of the developed forecasting models was performed to evaluate the ability of the hybrid ANFIS models. The bound width of 95% confidence interval (d-factor) and the percentage of observed samples which was enveloped by 95% forecasted uncertainties (95PPU) were used for this purpose. The results indicated that all the hybrid ANFIS models performed better than the conventional ANFIS and for all input combinations. The obtained results showed that the models with best input combinations had the (95PPU and d-factor) values of (91.67 and 1.41), (91.03 and 1.41), (89.74 and 1.42), and (88.46 and 1.43) for ANFIS-PSO, ANFIS-GA, ANFIS-DE, and the conventional ANFIS, respectively. Based on the 95PPU and d-factor, it is concluded that all hybrid ANFIS models have an acceptable degree of uncertainty in forecasting monthly rainfall. The results of this study proved that the hybrid ANFIS with an evolutionary algorithm is a reliable modeling technique for forecasting monthly rainfall.Validerad;2019;Nivå 2;2019-04-12 (johcin)</p

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore