19 research outputs found

    Safety of denervation following targeted lung denervation therapy for COPD:AIRFLOW-1 3-year outcomes

    Get PDF
    Background Targeted lung denervation (TLD) is a novel bronchoscopic therapy that disrupts parasympathetic pulmonary nerve input to the lung reducing clinical consequences of cholinergic hyperactivity. The AIRFLOW-1 study assessed safety and TLD dose in patients with moderate-to-severe, symptomatic COPD. This analysis evaluated the long-term impact of TLD on COPD exacerbations, pulmonary function, and quality of life over 3 years of follow up. Methods TLD was performed in a prospective, energy-level randomized (29 W vs 32 W power), multicenter study (NCT02058459). Additional patients were enrolled in an open label confirmation phase to confirm improved gastrointestinal safety after procedural modifications. Durability of TLD was evaluated at 1, 2, and 3 years post-treatment and assessed through analysis of COPD exacerbations, pulmonary lung function, and quality of life. Results Three-year follow-up data were available for 73.9% of patients (n = 34). The annualized rate of moderate to severe COPD exacerbations remained stable over the duration of the study. Lung function (FEV1, FVC, RV, and TLC) and quality of life (SGRQ-C and CAT) remained stable over 3 years of follow-up. No new gastrointestinal adverse events and no unexpected serious adverse events were observed. Conclusion TLD in COPD patients demonstrated a positive safety profile out to 3 years, with no late-onset serious adverse events related to denervation therapy. Clinical stability in lung function, quality of life, and exacerbations were observed in TLD treated patients over 3 years of follow up

    Long-term safety of bilateral targeted lung denervation in patients with COPD

    Get PDF
    Background: Targeted lung denervation (TLD) is a novel bronchoscopic therapy for COPD which ablates parasympathetic pulmonary nerves running along the outside of the two main bronchi with the intent of inducing permanent bronchodilation. The goal of this study was to evaluate the feasibility and long-term safety of bilateral TLD during a single procedure. Patients and methods: This prospective, multicenter study evaluated 15 patients with moderate-to-severe COPD (forced expiratory volume in 1 s [FEV1] 30%-60%) who underwent bilateral TLD treatment following baseline assessment without bronchodilators. The primary safety end point was freedom from documented and sustained worsening of COPD directly attributable to TLD up to 1 year. Secondary end points included technical feasibility, change in pulmonary function tests, exercise capacity, and health-related quality of life. Follow-up continued up to 3 years for subjects who reconsented for longer-term follow-up. Results: A total of 15 patients (47% male, age 63.2 +/- 4.0 years) underwent TLD with a total procedure time of 89 +/- 16 min, and the total fluoroscopy time was 2.5 +/- 2.7 min. Primary safety end point of freedom from worsening of COPD was 100%. There were no procedural complications reported. Results of lung function analysis and exercise capacity demonstrated similar beneficial effects of TLD without bronchodilators, when compared with long-acting anticholinergic therapy at 30 days, 180 days, 365 days, 2 years, and 3 years post-TLD. Five of the 12 serious adverse events that were reported through 3 years of follow-up were respiratory related with no events being related to TLD therapy. Conclusion: TLD delivered to both lungs in a single procedure is feasible and safe with few respiratory-related adverse events through 3 years

    Two-Year Outcomes for the Double-Blind, Randomized, Sham-Controlled Study of Targeted Lung Denervation in Patients with Moderate to Severe COPD:AIRFLOW-2

    Get PDF
    Purpose: COPD exacerbations are associated with worsening clinical outcomes and increased healthcare costs, despite use of optimal medical therapy. A novel bronchoscopic therapy, targeted lung denervation (TLD), which disrupts parasympathetic pulmonary innervation of the lung, has been developed to reduce clinical consequences of cholinergic hyperactivity and its impact on COPD exacerbations. The AIRFLOW-2 study assessed the durability of safety and efficacy of TLD additive to optimal drug therapy compared to sham bronchoscopy and optimal drug therapy alone in subjects with moderate-to-severe, symptomatic COPD two years post randomization. Patients and Methods: TLD was performed in COPD patients (FEV1 30-60% predicted, CAT≥10 or mMRC≥2) in a 1:1 randomized, sham-controlled, double-blinded multicenter study (AIRFLOW-2) using a novel lung denervation system (Nuvaira, Inc., USA). Subjects remained blinded until their 12.5-month follow-up visit when control subjects were offered the opportunity to undergo TLD. A time-to-first-event analysis on moderate and severe and severe exacerbations of COPD was performed. Results: Eighty-two subjects (FEV1 41.6±7.4% predicted, 50.0% male, age 63.7±6.8 yrs, 24% with prior year respiratory hospitalization) were randomized. Time-to-first severe COPD exacerbation was significantly lengthened in the TLD arm (p=0.04, HR=0.38) at 2 years post-TLD therapy and trended towards similar attenuation for moderate and severe COPD exacerbations (p=0.18, HR=0.71). No significant changes in lung function or SGRQ-C were found 2 years post randomization between groups. Conclusion: In a randomized trial, TLD demonstrated a durable effect of significantly lower risk of severe AECOPD over 2 years. Further, lung function and quality of life remained stable following TLD. Clinical Trial Registration: NCT02058459

    Bronchial thermoplasty: a novel technique in the treatment of severe asthma

    No full text
    New therapies are needed for patients with severe persistent asthma who cannot achieve control with current therapy of inhaled corticosteroids and long-acting β 2 -agonists. Bronchial thermoplasty is a novel intervention for asthma that delivers controlled thermal energy to the airway wall during a series of bronchoscopies, resulting in a prolonged reduction in airway smooth muscle mass. We review the method of performing bronchial thermoplasty with the Alair System, how to appropriately select and manage patients undergoing bronchial thermoplasty, and the clinical experience to date with this treatment. Randomized, controlled clinical trials with bronchial thermoplasty in subjects with severe asthma have resulted in improvements in overall asthma control as demonstrated by significant improvement in quality of life, asthma symptoms, severe exacerbations requiring corticosteroids, days lost from work/school/other daily activities due to asthma, and healthcare utilization

    Antimuscarinic Bronchodilator Response Retained after Bronchoscopic Vagal Denervation in Chronic Obstructive Pulmonary Disease Patients

    Get PDF
    Emphysema is a very common cause of morbidity and mortality in South Africa (SA). Therapeutic options in severe emphysema are limited. Endoscopic lung volume reduction (ELVR) is increasingly being used internationally for the treatment of advanced emphysema in a subset of patients with advanced disease, aiming to obtain the same functional advantages as surgical lung volume reduction while reducing risks and costs. In addition to endobronchial valves, ELVR using endobronchial coils is now available in SA. The high cost of these interventions underscores the need for careful patient selection to best identify those who may or may not benefit from ELVR-related procedures. The Assembly on Interventional Pulmonology of the South African Thoracic Society appointed a committee comprising both local and international experts to extensively review all relevant evidence and provide advice on the use of ELVR in SA based on published evidence, expert opinion and local access to the various devices

    Safety of denervation following targeted lung denervation therapy for COPD: AIRFLOW-1 3-year outcomes

    Get PDF
    Following publication of the original article [1], we were notified that the first and last author names have been swapped. The original article has been corrected.SCOPUS: er.jinfo:eu-repo/semantics/publishe

    Safety of denervation following targeted lung denervation therapy for COPD: AIRFLOW-1 3-year outcomes

    Get PDF
    International audienceBackground: Targeted lung denervation (TLD) is a novel bronchoscopic therapy that disrupts parasympathetic pulmonary nerve input to the lung reducing clinical consequences of cholinergic hyperactivity. The AIRFLOW-1 study assessed safety and TLD dose in patients with moderate-to-severe, symptomatic COPD. This analysis evaluated the long-term impact of TLD on COPD exacerbations, pulmonary function, and quality of life over 3 years of follow up.Methods: TLD was performed in a prospective, energy-level randomized (29 W vs 32 W power), multicenter study (NCT02058459). Additional patients were enrolled in an open label confirmation phase to confirm improved gastrointestinal safety after procedural modifications. Durability of TLD was evaluated at 1, 2, and 3 years post-treatment and assessed through analysis of COPD exacerbations, pulmonary lung function, and quality of life.Results: Three-year follow-up data were available for 73.9% of patients (n = 34). The annualized rate of moderate to severe COPD exacerbations remained stable over the duration of the study. Lung function (FEV 1 , FVC, RV, and TLC) and quality of life (SGRQ-C and CAT) remained stable over 3 years of follow-up. No new gastrointestinal adverse events and no unexpected serious adverse events were observed.Conclusion: TLD in COPD patients demonstrated a positive safety profile out to 3 years, with no late-onset serious adverse events related to denervation therapy. Clinical stability in lung function, quality of life, and exacerbations were observed in TLD treated patients over 3 years of follow up
    corecore