2 research outputs found
The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans
Recent studies suggest that admixture with archaic hominins played an important role in facilitating biological adaptations to new environments. For example, interbreeding with Denisovans facilitated the adaptation to high-altitude environments on the Tibetan Plateau. Specifically, the EPAS1 gene, a transcription factor that regulates the response to hypoxia, exhibits strong signatures of both positive selection and introgression from Denisovans in Tibetan individuals. Interestingly, despite being geographically closer to the Denisova Cave, East Asian populations do not harbor as much Denisovan ancestry as populations from Melanesia. Recently, two studies have suggested two independent waves of Denisovan admixture into East Asians, one of which is shared with South Asians and Oceanians. Here, we leverage data from EPAS1 in 78 Tibetan individuals to interrogate which of these two introgression events introduced the EPAS1 beneficial sequence into the ancestral population of Tibetans, and we use the distribution of introgressed segment lengths at this locus to infer the timing of the introgression and selection event. We find that the introgression event unique to East Asians most likely introduced the beneficial haplotype into the ancestral population of Tibetans around 48,700 (16,000–59,500) y ago, and selection started around 9,000 (2,500–42,000) y ago. Our estimates suggest that one of the most convincing examples of adaptive introgression is in fact selection acting on standing archaic variation
Ten simple rules for an inclusive summer coding program for non-computer-science undergraduates.
Since 2015, we have run a free 9-week summer program that provides non-computer science (CS) undergraduates at San Francisco State University (SFSU) with experience in coding and doing research. Undergraduate research experiences remain very limited at SFSU and elsewhere, so the summer program provides opportunities for many more students beyond the mentoring capacity of our university laboratories. In addition, we were concerned that many students from historically underrepresented (HU) groups may be unable to take advantage of traditional summer research programs because these programs require students to relocate or be available full time, which is not feasible for students who have family, work, or housing commitments. Our program, which is local and part-time, serves about 5 times as many students as a typical National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program, on a smaller budget. Based on our experiences, we present 10 simple rules for busy faculty who want to create similar programs to engage non-CS HU undergraduates in computational research. Note that while some of the strategies we implement are based on evidence-based publications in the social sciences or education research literature, the original suggestions we make here are based on our trial-and-error experiences, rather than formal hypothesis testing