456 research outputs found

    Spectral properties of finite laser-driven lattices of ultracold Rydberg atoms

    Full text link
    We investigate the spectral properties of a finite laser-driven lattice of ultracold Rydberg atoms exploiting the dipole blockade effect in the frozen Rydberg gas regime. Uniform one-dimensional lattices as well as lattices with variable spacings are considered. In the case of a weak laser coupling, we find a multitude of many-body Rydberg states with well-defined excitation properties which are adiabatically accessible starting from the ground state. A comprehensive analysis of the degeneracies of the spectrum as well as of the single and pair excitations numbers of the eigenstates is performed. In the strong laser regime, analytical solutions for the pseudo-fermionic eigenmodes are derived. Perturbative energy corrections for this approximative approach are provided.Comment: 17 pages, 12 figure

    Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers

    Get PDF
    We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.Comment: 10 pages, 4 figure

    Binary Induced Neutron-Star Compression, Heating, and Collapse

    Get PDF
    We analyze several aspects of the recently noted neutron star collapse instability in close binary systems. We utilize (3+1) dimensional and spherical numerical general relativistic hydrodynamics to study the origin, evolution, and parametric sensitivity of this instability. We derive the modified conditions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the possible interior heating and associated neutrino luminosity which could be generated as the stars gradually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also discussed.Comment: 17 pages, 7 figure

    Instabilities in neutrino-plasma density waves

    Get PDF
    One examines the interaction and possible resonances between supernova neutrinos and electron plasma waves. The neutrino phase space distribution and its boundary regions are analyzed in detail. It is shown that the boundary regions are too wide to produce non-linear resonant effects. The growth or damping rates induced by neutrinos are always proportional to the neutrino flux and GF2G_{{\rm F}}^{2}.Comment: 9 pages, a few words modified to match PRD publicatio

    A Fresh Look at Axions and SN 1987A

    Get PDF
    We re-examine the very stringent limits on the axion mass based on the strength and duration of the neutrino signal from SN 1987A, in the light of new measurements of the axial-vector coupling strength of nucleons, possible suppression of axion emission due to many-body effects, and additional emission processes involving pions. The suppression of axion emission due to nucleon spin fluctuations induced by many-body effects degrades previous limits by a factor of about 2. Emission processes involving thermal pions can strengthen the limits by a factor of 3-4 within a perturbative treatment that neglects saturation of nucleon spin fluctuations. Inclusion of saturation effects, however, tends to make the limits less dependent on pion abundances. The resulting axion mass limit also depends on the precise couplings of the axion and ranges from 0.5x10**(-3) eV to 6x10**(-3) eV.Comment: 32 latex pages, 13 postscript figures included, uses revtex.sty, submitted to Physical Review
    • 

    corecore