38 research outputs found

    Cardiovascular magnetic resonance and PET-CT of left atrial paraganglioma

    Get PDF
    Cardiac paragangliomas are among the rarest primary cardiac tumors. We present a case of left atrial paraganglioma in a patient who presented with symptoms and signs of catecholamine excess in which cardiovascular magnetic resonance in multiple orientations and PET-CT played an important role in the diagnosis and tissue characterization

    Cystic adventitial disease of the popliteal artery: features on 3T cardiovascular magnetic resonance

    Get PDF
    Cystic adventitial disease (CAD) of the popliteal artery is a rare vascular disease of unknown etiology in which a mucin-containing cyst develops in the adventitial layer of the artery. We report the case of a 26-year-old male with CAD of the right popliteal artery diagnosed non-invasively with 3 Tesla cardiovascular magnetic resonance and confirmed on post-operative histopathology

    Congenital heart diseases: post-operative appearance on multi-detector CT—a pictorial essay

    Get PDF
    Echocardiography is considered as an initial imaging modality of choice in patients with congenital heart disease (CHD), and magnetic resonance (MR) imaging is preferred for detailed functional information. Multi-detector computed tomography (CT) plays an important role in clinical practice in assessing post-operative morphological and functional information of patients with complex CHD when echocardiography and MR imaging are not contributory. Radiologists should understand and become familiar with the complex morphology and physiology of CHD, as well as with various palliative and corrective surgical procedures performed in these patients, to obtain CT angiograms with diagnostic quality and promptly recognise imaging features of normal post-operative anatomy and complications of these complex surgeries

    Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases

    Get PDF
    The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases. Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined. Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P < 0.001) with no significant difference for other aortic segments (P > 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01). Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material

    Cardiovascular magnetic resonance in patients with pectus excavatum compared with normal controls

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess cardiothoracic structure and function in patients with pectus excavatum compared with control subjects using cardiovascular magnetic resonance imaging (CMR).</p> <p>Method</p> <p>Thirty patients with pectus excavatum deformity (23 men, 7 women, age range: 14-67 years) underwent CMR using 1.5-Tesla scanner (Siemens) and were compared to 25 healthy controls (18 men, 7 women, age range 18-50 years). The CMR protocol included cardiac cine images, pulmonary artery flow quantification, time resolved 3D contrast enhanced MR angiography (CEMRA) and high spatial resolution CEMRA. Chest wall indices including maximum transverse diameter, pectus index (PI), and chest-flatness were measured in all subjects. Left and right ventricular ejection fractions (LVEF, RVEF), ventricular long and short dimensions (LD, SD), mid-ventricle myocardial shortening, pulmonary-systemic circulation time, and pulmonary artery flow were quantified.</p> <p>Results</p> <p>In patients with pectus excavatum, the pectus index was 9.3 ± 5.0 versus 2.8 ± 0.4 in controls (P < 0.001). No significant differences between pectus excavatum patients and controls were found in LV ejection fraction, LV myocardial shortening, pulmonary-systemic circulation time or pulmonary flow indices. In pectus excavatum, resting RV ejection fraction was reduced (53.9 ± 9.6 versus 60.5 ± 9.5; P = 0.013), RVSD was reduced (P < 0.05) both at end diastole and systole, RVLD was increased at end diastole (P < 0.05) reflecting geometric distortion of the RV due to sternal compression.</p> <p>Conclusion</p> <p>Depression of the sternum in pectus excavatum patients distorts RV geometry. Resting RVEF was reduced by 6% of the control value, suggesting that these geometrical changes may influence myocardial performance. Resting LV function, pulmonary circulation times and pulmonary vascular anatomy and perfusion indices were no different to controls.</p
    corecore