1,126 research outputs found

    Five-loop \sqrt\epsilon-expansions for random Ising model and marginal spin dimensionality for cubic systems

    Full text link
    The \sqrt\epsilon-expansions for critical exponents of the weakly-disordered Ising model are calculated up to the five-loop order and found to possess coefficients with irregular signs and values. The estimate n_c = 2.855 for the marginal spin dimensionality of the cubic model is obtained by the Pade-Borel resummation of corresponding five-loop \epsilon-expansion.Comment: 9 pages, TeX, no figure

    Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds.

    Get PDF
    Autophagy-related protein 18 (Atg18) participates in the elongation of early autophagosomal structures in concert with Atg2 and Atg9 complexes. How Atg18 contributes to the structural coordination of Atg2 and Atg9 at the isolation membrane remains to be understood. Here, we determined the cryo-EM structures of Atg18 organized in helical tubes, Atg18 oligomers in solution as well as on lipid membrane scaffolds. The helical assembly is composed of Atg18 tetramers forming a lozenge cylindrical lattice with remarkable structural similarity to the COPII outer coat. When reconstituted with lipid membranes, using subtomogram averaging we determined tilted Atg18 dimer structures bridging two juxtaposed lipid membranes spaced apart by 80 Å. Moreover, lipid reconstitution experiments further delineate the contributions of Atg18's FRRG motif and the amphipathic helical extension in membrane interaction. The observed structural plasticity of Atg18's oligomeric organization and membrane binding properties provide a molecular framework for the positioning of downstream components of the autophagy machinery

    Five-loop renormalization-group expansions for the three-dimensional n-vector cubic model and critical exponents for impure Ising systems

    Full text link
    The renormalization-group (RG) functions for the three-dimensional n-vector cubic model are calculated in the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the three-dimensional impure Ising systems are extracted from the five-loop RG series by means of the Pade-Borel-Leroy resummation under n = 0. These exponents are found to be: \gamma = 1.325 +/- 0.003, \eta = 0.025 +/- 0.01, \nu = 0.671 +/- 0.005, \alpha = - 0.0125 +/- 0.008, \beta = 0.344 +/- 0.006. For the correction-to-scaling exponent, the less accurate estimate \omega = 0.32 +/- 0.06 is obtained.Comment: 11 pages, LaTeX, no figures, published versio

    Effects of different needles and substrates on CuInS2 deposited by electrostatic spray deposition

    Get PDF
    Copper indium disulphide (CuInS2) thin films were deposited using the electrostatic spray deposition method. The effects of applied voltage and solution flow rate on the aerosol cone shape, film composition, surface morphology and current conversion were investigated. The effect of aluminium substrates and transparent fluorine doped tin oxide (SnO2:F) coated glass substrates on the properties of as-deposited CuInS2 films were analysed. An oxidation process occurs during the deposition onto the metallic substrates which forms an insulating layer between the photoactive film and substrate. The effects of two different spray needles on the properties of the as-deposited films were also studied. The results reveal that the use of a stainless steel needle results in contamination of the film due to the transfer of metal impurities through the spray whilst this is not seen for the glass needle. The films were characterised using a number of different analytical techniques such as X-ray diffraction, scanning electron microscopy, Rutherford back-scattering and secondary ion mass spectroscopy and opto-electronic measurements

    The η\eta-3N problem with separable interactions

    Full text link
    The η\eta-3N-interaction is studied within the four-body Faddeev-Yakubovsky theory adopting purely separable forms for the two- and three-body subamplitudes, limiting the basic two-body interactions to s-waves only. The corresponding separable approximation for the integral kernels is obtained by using the Hilbert-Schmidt procedure. Results are presented for the η\eta-3^3H scattering amplitude and for the total elastic cross section for energies below the triton break-up threshold.Comment: revised version accepted for Phys. Rev. C, 16 pages revtex including 6 eps-figures, formal part shortene

    Fluctuation-dissipation relations in the non-equilibrium critical dynamics of Ising models

    Full text link
    We investigate the relation between two-time, multi-spin, correlation and response functions in the non-equilibrium critical dynamics of Ising models in d=1 and d=2 spatial dimensions. In these non-equilibrium situations, the fluctuation-dissipation theorem (FDT) is not satisfied. We find FDT `violations' qualitatively similar to those reported in various glassy materials, but quantitatively dependent on the chosen observable, in contrast to the results obtained in infinite-range glass models. Nevertheless, all FDT violations can be understood by considering separately the contributions from large wavevectors, which are at quasi-equilibrium and obey FDT, and from small wavevectors where a generalized FDT holds with a non-trivial limit fluctuation-dissipation ratio X. In d=1, we get X = 1/2 for spin observables, which measure the orientation of domains, while X = 0 for observables that are sensitive to the domain-wall motion. Numerical simulations in d=2 reveal a unique X = 0.34 for all observables. Measurement protocols for X are discussed in detail. Our results suggest that the definition of an effective temperature Teff = T / X for large length scales is generically possible in non-equilibrium critical dynamics.Comment: 26 pages, 10 figure

    Critical behavior of weakly-disordered anisotropic systems in two dimensions

    Full text link
    The critical behavior of two-dimensional (2D) anisotropic systems with weak quenched disorder described by the so-called generalized Ashkin-Teller model (GATM) is studied. In the critical region this model is shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behavior of the two-spin correlation function. The equation of state at criticality is also obtained in this framework. We find that random models described by the GATM belong to the same universality class as that of the two-dimensional Ising model. The critical exponent ν\nu of the correlation length for the 3- and 4-state random-bond Potts models is also calculated in a 3-loop approximation. We show that this exponent is given by an apparently convergent series in ϵ=c12\epsilon=c-\frac{1}{2} (with cc the central charge of the Potts model) and that the numerical values of ν\nu are very close to that of the 2D Ising model. This work therefore supports the conjecture (valid only approximately for the 3- and 4-state Potts models) of a superuniversality for the 2D disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.

    Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Get PDF
    BACKGROUND: Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS: HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS: All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS: Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted

    Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity

    Full text link
    In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at t~=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as tt\rightarrow\infty in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc
    corecore