30,136 research outputs found
The stability of the O(N) invariant fixed point in three dimensions
We study the stability of the O(N) fixed point in three dimensions under
perturbations of the cubic type. We address this problem in the three cases
by using finite size scaling techniques and high precision Monte
Carlo simulations. It is well know that there is a critical value
below which the O(N) fixed point is stable and above which the cubic fixed
point becomes the stable one. While we cannot exclude that , as recently
claimed by Kleinert and collaborators, our analysis strongly suggests that
coincides with 3.Comment: latex file of 18 pages plus three ps figure
Epitaxial growth of deposited amorphous layer by laser annealing
We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing
Gamma–ray spectroscopy with single–carrier collection in high–resistivity semiconductors
With the standard plane–parallel configuration of semiconductor detectors, good γ–ray spectra can only be obtained when both electrons and holes are completely collected. We show by calculations (and experiments) that with contacts of hemispherical configuration one can obtain γ–ray spectra of adequate resolution and with signal heights of nearly full amplitude even when only one type of carrier is collected. Experiments with CdTe detectors for which the µτ product for electrons is about 10^(3) times that of the holes confirm these calculations. The adoption of hemispherical contacts thus widens the range of high–resistivity semiconductors potentially acceptable for γ–ray detection at room temperature
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
Antimony doping of Si layers grown by solid-phase epitaxy
We report here that layers of Si formed by solid-phase epitaxial growth (SPEG) can be doped intentionally. The sample consists initially of an upper layer of amorphous Si (~1 µm thick), a very thin intermediate layer of Sb (nominally 5 Å), and a thin lower layer of Pd (~500 Å), all electron-gun deposited on top of a single-crystal substrate (1–10 Ω cm, p type, orientation). After a heating cycle which induces epitaxial growth, electrically active Sb atoms are incorporated into the SPEG layer, as shown by the following facts: (a) the SPEG layer forms a p-n junction against the p-type substrate, (b) the Hall effect indicates strong n-type conduction of the layer, and (c) Auger electron spectra reveal the presence of Sb in the layer
Radio Synchrotron Emission from Secondary Leptons in the Vicinity of Sgr A*
A point-like source of ~TeV gamma-rays has recently been seen towards the
Galactic center by HESS and other air Cerenkov telescopes. In recent work
(Ballantyne et al. 2007), we demonstrated that these gamma-rays can be
attributed to high-energy protons that (i) are accelerated close to the event
horizon of the central black hole, Sgr A*, (ii) diffuse out to ~pc scales, and
(iii) finally interact to produce gamma-rays. The same hadronic collision
processes will necessarily lead to the creation of electrons and positrons.
Here we calculate the synchrotron emissivity of these secondary leptons in the
same magnetic field configuration through which the initiating protons have
been propagated in our model. We compare this emission with the observed ~GHz
radio spectrum of the inner few pc region which we have assembled from archival
data and new measurements we have made with the Australia Telescope Compact
Array. We find that our model predicts secondary synchrotron emission with a
steep slope consistent with the observations but with an overall normalization
that is too large by a factor of ~ 2. If we further constrain our theoretical
gamma-ray curve to obey the implicit EGRET upper limit on emission from this
region we predict radio emission that is consistent with observations, i.e.,
the hadronic model of gamma ray emission can, simultaneously and without
fine-tuning, also explain essentially all the diffuse radio emission detected
from the inner few pc of the Galaxy.Comment: 11 pages, 2 figures. Two references missing from published version
added and acknowledgements extende
- …