26,808 research outputs found

    The Formation of Galaxy Disks

    Full text link
    We present a new set of multi-million particle SPH simulations of the formation of disk dominated galaxies in a cosmological context. Some of these galaxies are higher resolution versions of the models already described in Governato et al (2007). To correctly compare simulations with observations we create artificial images of our simulations and from them measure photometric Bulge to Disk (B/D) ratios and disk scale lengths. We show how feedback and high force and mass resolution are necessary ingredients to form galaxies that have flatter rotation curves, larger I band disk scale lengths and smaller B/D ratios. A new simulated disk galaxy has an I-band disk scale length of 9.2 kpc and a B/D flux ratio of 0.64 (face on, dust reddened).Comment: To appear in proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J.G. Funes, S.J. and E.M. Corsini. Bigger figures than in printed versio

    The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies

    Full text link
    The physical mechanisms and timescales that determine the morphological signatures and the quenching of star formation of typical (~L*) elliptical galaxies are not well understood. To address this issue, we have simulated the formation of a group of galaxies with sufficient resolution to track the evolution of gas and stars inside about a dozen galaxy group members over cosmic history. Galaxy groups, which harbor many elliptical galaxies in the universe, are a particularly promising environment to investigate morphological transformation and star formation quenching, due to their high galaxy density, their relatively low velocity dispersion, and the presence of a hot intragroup medium. Our simulation reproduces galaxies with different Hubble morphologies and, consequently, enables us to study when and where the morphological transformation of galaxies takes place. The simulation does not include feedback from active galactic nuclei showing that it is not an essential ingredient for producing quiescent, red elliptical galaxies in galaxy groups. Ellipticals form, as suspected, through galaxy mergers. In contrast with what has often been speculated, however, these mergers occur at z>1, before the merging progenitors enter the virial radius of the group and before the group is fully assembled. The simulation also shows that quenching of star formation in the still star-forming elliptical galaxies lags behind their morphological transformation, but, once started, is taking less than a billion years to complete. As long envisaged the star formation quenching happens as the galaxies approach and enter the finally assembled group, due to quenching of gas accretion and (to a lesser degree) stripping. A similar sort is followed by unmerged, disk galaxies, which, as they join the group, are turned into the red-and-dead disks that abound in these environments.Comment: 12 pages, 12 Figures, 1 Table, accepted for publication in AP

    Fire extinguishant materials

    Get PDF
    Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred

    Relevance of cosmic gamma rays to the mass of gas in the galaxy

    Get PDF
    The bulk of the diffuse gamma-ray flux comes from cosmic ray interactions in the interstellar medium. A knowledge of the large scale spatial distribution of the Galactic gamma-rays and the cosmic rays enables the distribution of the target gas to be examined. An approach of this type is used here to estimate the total mass of the molecular gas in the galaxy. It is shown to be much less than that previously derived, viz., approximately 6 x 10 to the 8th power solar masses within the solar radius as against approximately 3 x 10 to the 9th power based on 2.6 mm CO measurements

    Excess gamma rays from the Loop I supernova remnant

    Get PDF
    Evidence is presented for an excess of cosmic ray intensity within the Loop I supernova remnant based on an interpretation of the observed distribution of gamma-rays across the remnant and the column densities of the associated gas. A strong case can thus be made for the bulk of the cosmic radiation (E , 10 to the 11th power eV) being produced in the Galactic supernova remnants

    Subdiffusive motion in kinetically constrained models

    Full text link
    We discuss a kinetically constrained model in which real-valued local densities fluctuate in time, as introduced recently by Bertin, Bouchaud and Lequeux. We show how the phenomenology of this model can be reproduced by an effective theory of mobility excitations propagating in a disordered environment. Both excitations and probe particles have subdiffusive motion, characterised by different exponents and operating on different time scales. We derive these exponents, showing that they depend continuously on one of the parameters of the model.Comment: 12 pages, 5 figure

    Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    Get PDF
    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented

    Long term variability of the cosmic ray intensity

    Get PDF
    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years

    High Accuracy Fuel Flowmeter, Phase 1

    Get PDF
    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation

    Dynamic heterogeneities in critical coarsening: Exact results for correlation and response fluctuations in finite-sized spherical models

    Full text link
    We study dynamic heterogeneities in the out-of-equilibrium coarsening dynamics of the spherical ferromagnet after a quench from infinite temperature to its critical point. A standard way of probing such heterogeneities is by monitoring the fluctuations of correlation and susceptibility, coarse-grained over mesoscopic regions. We discuss how to define fluctuating coarse-grained correlations (C) and susceptibilities (Chi) in models where no quenched disorder is present. Our focus for the spherical model is on coarse-graining over the whole volume of NN spins, which requires accounting for N^{-1/2} non-Gaussian fluctuations of the spin. The latter are treated as a perturbation about the leading order Gaussian statistics. We obtain exact results for these quantities, which enable us to characterise the joint distribution of C and Chi fluctuations. We find that this distribution is qualitatively different, even for equilibrium above criticality, from the spin-glass scenario where C and Chi fluctuations are linked in a manner akin to the fluctuation-dissipation relation between the average C and Chi. Our results show that coarsening at criticality is clearly heterogeneous for d>4 and suggest that, as in other glassy systems, there is a well-defined timescale on which fluctuations across thermal histories are largest. Surprisingly, however, neither this timescale nor the amplitude of the heterogeneities increase with the age of the system, as would be expected from the growing correlation length. For d<4, the strength of the fluctuations varies on a timescale proportional to the age of the system; the corresponding amplitude also grows with age, but does not scale with the correlation volume as might have been expected naively.Comment: 39 pages, 9 figures, version for publication in J. Stat. Mech. Shortened by cutting all technical details in section 6, with minor corrections elsewher
    corecore