23 research outputs found

    Soccer-Specific Stadiums and Attendance in Major League Soccer: Investigating the Novelty Effect

    Get PDF
    Major League Soccer (MLS) officials have focused on the construction of soccer-specific stadiums as a key aspect of the league’s development strategy. Research in numerous professional sport contexts has found that teams tend to experience an increase in attendance after moving into new stadiums. Researchers have termed this phenomenon the novelty effect. Given MLS’s longtime emphasis on constructing soccer-specific stadiums, the purpose of the current study was to examine the extent to which a novelty effect exists in MLS. Results of a repeated measures t test indicated that clubs experienced an increase in attendance during their first season in a soccer-specific stadium, and this novelty effect appears to persist to a significant extent for at least 3 years. However, the relatively young age of the league, the success of a club such as Seattle Sounders FC playing in a multipurpose venue, and the costs associated with stadium construction present important issues for further research and consideration

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities

    Opioids, gliosis and central immunomodulation

    Full text link
    Neuropathic pain is a common health problem that affects millions of people worldwide. Despite being studied extensively, the cellular and molecular events underlying the central immunomodulation and the pathophysiology of neuropathic pain is still controversial. The idea that ‘glial cells are merely housekeepers’ is incorrect and with respect to initiation and maintenance of neuropathic pain, microglia and astrocytes have important roles to play. Glial cells differentially express opioid receptors and are thought to be functionally modulated by the activation of these receptors. In this review, we discuss evidence for glia-opioid modulation of pain by focusing on the pattern of astrocyte and microglial activation throughout the progress of nerve injury/neuropathic pain. Activation of astrocytes and microglia is a key step in central immunomodulation in terms of releasing pro-inflammatory markers and propagation of a ‘central immune response’. Inhibition of astrocytes before and after induction of neuropathic pain has been found to prevent and reverse neuropathic pain, respectively. Moreover, microglial inhibitors have been found to prevent (but not to reverse) neuropathic pain. As they are expressed by glia, opioid receptors are expected to have a role to play in neuropathic pain
    corecore