15 research outputs found
Limits and phylogenetic relationships of East Asian fishes in the subfamily Oxygastrinae (Teleostei: Cypriniformes: Cyprinidae)
The cyprinid subfamily Oxygastrinae is composed of a diverse group of fishes that has been taxonomically and phylogenetically problematic. Their great variation in appearance, life histories, and trophic diversity resulted in uncertainty regarding their relationships, which led to their historical classification across many disparate subfamilies. The phylogenetic relationships of Oxygastrinae are resolved based on sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. A combined data matrix consisting of 4114 bp for 144 taxa was compiled and analyzed using maximum likelihood and parsimony optimality criteria. The subfamily Oxygastrinae is recovered as a monophyletic group that includes Ancherythroculter, Aphyocypris, Candidia, Chanodichthys, Ctenopharyngodon, Culter, Distoechodon, Elopichthys, Hainania, Hemiculter, Hemiculterella, Hemigrammocypris, Hypophthalmichthys, Ischikauia, Macrochirichthys, Megalobrama, Metzia, Mylopharyngodon, Nicholsicypris, Nipponocypris, Ochetobius, Opsariichthys, Oxygaster, Parabramis, Parachela, Paralaubuca, Pararasbora, Parazacco, Plagiognathops, Pseudobrama, Pseudohemiculter, Pseudolaubuca, Sinibrama, Squaliobarbus, Toxabramis, Xenocyprioides, Xenocypris, Yaoshanicus, and Zacco. Of these genera, the following were found to be monophyletic: Aphyocypris, Distoechodon, Hypophthalmichthys, Nipponocypris, Opsariichthys, Parachela, Paralaubuca, Plagiognathops, Xenocyprioides, and Xenocypris. The following genera were not monophyletic: Metzia, Hemiculter, Toxabramis, Ancherythroculter, Chanodichthys, Culter, Megalobrama. The remainder are either monotypic or were represented by only a single species. Four genera not examined in this study are provisionally classified in Oxygastrinae: Anabarilius, Longiculter, Pogobrama, and Rasborichthys.The cyprinid subfamily Oxygastrinae is composed of a diverse group of fishes that has been taxonomically and phylogenetically problematic. Their great variation in appearance, life histories, and trophic diversity resulted in uncertainty regarding their relationships, which led to their historical classification across many disparate subfamilies. The phylogenetic relationships of Oxygastrinae are resolved based on sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. A combined data matrix consisting of 4114 bp for 144 taxa was compiled and analyzed using maximum likelihood and parsimony optimality criteria. The subfamily Oxygastrinae is recovered as a monophyletic group that includes Ancherythroculter, Aphyocypris, Candidia, Chanodichthys, Ctenopharyngodon, Culter, Distoechodon, Elopichthys, Hainania, Hemiculter, Hemiculterella, Hemigrammocypris, Hypophthalmichthys, Ischikauia, Macrochirichthys, Megalobrama, Metzia, Mylopharyngodon, Nicholsicypris, Nipponocypris, Ochetobius, Opsariichthys, Oxygaster, Parabramis, Parachela, Paralaubuca, Pararasbora, Parazacco, Plagiognathops, Pseudobrama, Pseudohemiculter, Pseudolaubuca, Sinibrama, Squaliobarbus, Toxabramis, Xenocyprioides, Xenocypris, Yaoshanicus, and Zacco. Of these genera, the following were found to be monophyletic: Aphyocypris, Distoechodon, Hypophthalmichthys, Nipponocypris, Opsariichthys, Parachela, Paralaubuca, Plagiognathops, Xenocyprioides, and Xenocypris. The following genera were not monophyletic: Metzia, Hemiculter, Toxabramis, Ancherythroculter, Chanodichthys, Culter, Megalobrama. The remainder are either monotypic or were represented by only a single species. Four genera not examined in this study are provisionally classified in Oxygastrinae: Anabarilius, Longiculter, Pogobrama, and Rasborichthys
Phylogeny of the gudgeons (Teleostei: Cyprinidae: Gobioninae)
The members of the cyprinid subfamily Gobioninae, commonly called gudgeons, form one of the most well-established assemblages in the family Cyprinidae. The subfamily is a species-rich group of fishes, these fishes display diverse life histories, appearances, and behavior. The phylogenetic relationships of Gobioninae are examined using sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. This investigation produced a data matrix of 4114 bp for 162 taxa that was analyzed using parsimony, maximum likelihood, and Bayesian inference methods. The phylogenies our analyses recovered corroborate recent studies on the group. The subfamily Gobioninae is monophyletic and composed of three major lineages. We find evidence for a Hemibarbus-Squalidus group, and the tribes Gobionini and Sarcocheilichthyini, with the Hemibarbus-Squalidus group sister to a clade of Gobionini-Sarcocheilichthyini. The Hemibarbus-Squalidus group includes those two genera; the tribe Sarcocheilichthyini includes Coreius, Coreoleuciscus, Gnathopogon, Gobiocypris, Ladislavia, Paracanthobrama, Pseudorasbora, Pseudopungtungia, Pungtungia, Rhinogobio, and Sarcocheilichthys; the tribe Gobionini includes Abbottina, Biwia, Gobio, Gobiobotia, Huigobio, Microphysogobio, Platysmacheilus, Pseudogobio, Romanogobio, Saurogobio, and Xenophysogobio. The monotypic Acanthogobio is placed into the synonymy of Gobio. We tentatively assign Belligobio to the Hemibarbus-Squalidus group and Mesogobio to Gobionini; Paraleucogobio and Parasqualidus remain incertae sedis. Based on the topologies presented, the evolution of swim bladder specializations, a distinctive feature among cyprinids, has occurred more than once within the subfamily. (C) 2011 Elsevier Inc. All rights reserved