4 research outputs found

    Examining the use of glucose and physical activity self-monitoring technologies in individuals at moderate to high risk of developing type 2 diabetes: randomized trial

    Get PDF
    Background Self-monitoring of behavior (namely, diet and physical activity) and physiology (namely, glucose) has been shown to be effective in type 2 diabetes (T2D) and prediabetes prevention. By combining self-monitoring technologies, the acute physiological consequences of behaviors could be shown, prompting greater consideration to physical activity levels today, which impact the risk of developing diabetes years or decades later. However, until recently, commercially available technologies have not been able to show individuals the health benefits of being physically active. Objective The objective of this study was to examine the usage, feasibility, and acceptability of behavioral and physiological self-monitoring technologies in individuals at risk of developing T2D. Methods A total of 45 adults aged ≥40 years and at moderate to high risk of T2D were recruited to take part in a 3-arm feasibility trial. Each participant was provided with a behavioral (Fitbit Charge 2) and physiological (FreeStyle Libre flash glucose monitor) monitor for 6 weeks, masked according to group allocation. Participants were allocated to glucose feedback (4 weeks) followed by glucose and physical activity (biobehavioral) feedback (2 weeks; group 1), physical activity feedback (4 weeks) followed by biobehavioral feedback (2 weeks; group 2), or biobehavioral feedback (6 weeks; group 3). Participant usage (including time spent on the apps and number of glucose scans) was the primary outcome. Secondary outcomes were the feasibility (including recruitment and number of sensor displacements) and acceptability (including monitor wear time) of the intervention. Semistructured qualitative interviews were conducted at the 6-week follow-up appointment. Results For usage, time spent on the Fitbit and FreeStyle Libre apps declined over the 6 weeks for all groups. Of the FreeStyle Libre sensor scans conducted by participants, 17% (1798/10,582) recorded rising or falling trends in glucose, and 24% (13/45) of participants changed ≥1 of the physical activity goals. For feasibility, 49% (22/45) of participants completed the study using the minimum number of FreeStyle Libre sensors, and a total of 41 sensors were declared faulty or displaced. For acceptability, participants wore the Fitbit for 40.1 (SD 3.2) days, and 20% (9/45) of participants and 53% (24/45) of participants were prompted by email to charge or sync the Fitbit, respectively. Interviews unearthed participant perceptions on the study design by suggesting refinements to the eligibility criteria and highlighting important issues about the usability, wearability, and features of the technologies. Conclusions Individuals at risk of developing T2D engaged with wearable digital health technologies providing behavioral and physiological feedback. Modifications are required to both the study and to commercially available technologies to maximize the chances of sustained usage and behavior change. The study and intervention were feasible to conduct and acceptable to most participants. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN) 17545949; isrctn.com/ISRCTN1754594

    Sensing interstitial glucose to nudge active lifestyles (SIGNAL): feasibility of combining novel self-monitoring technologies for persuasive behaviour change

    No full text
    Introduction Increasing physical activity (PA) reduces the risk of developing diabetes, highlighting the role of preventive medicine approaches. Changing lifestyle behaviours is difficult and is often predicated on the assumption that individuals are willing to change their lifestyles today to reduce the risk of developing disease years or even decades later. The self-monitoring technologies tested in this study will present PA feedback in real time, parallel with acute physiological data. Presenting the immediate health benefits of being more physically active may help enact change by observing the immediate consequences of that behaviour. The present study aims to assess user engagement with the self-monitoring technologies in individuals at moderate-to-high risk of developing type 2 diabetes. Methods and analysis 45 individuals with a moderate-to-high risk, aged ≥40 years old and using a compatible smartphone, will be invited to take part in a 7-week protocol. Following 1 week of baseline measurements, participants will be randomised into one of three groups: group 1 -glucose feedback followed by biobehavioural feedback (glucose plus PA); group 2 - PA feedback followed by biobehavioural feedback; group 3 - biobehavioural feedback. A PA monitor and a flash glucose monitor will be deployed during the intervention. Participants will wear both devices throughout the intervention but blinded to feedback depending on group allocation. The primary outcome is the level of participant engagement and will be assessed by device use and smartphone usage. Feasibility will be assessed by the practicality of the technology and screening for diabetes risk. Semistructured interviews will be conducted to explore participant experiences using the technologies. Trial registration number ISRCTN17545949. Registered on 15/05/2017

    Resistance to data loss from the Freestyle Libre: Impact on glucose variability indices and recommendations for data analysis

    No full text
    Like many wearables, flash glucose monitoring relies on user compliance and is subject to missing data. As recent research is beginning to utilise glucose technologies as behaviour change tools, it is important to understand whether missing data is tolerable. Complete Freestyle Libre data files were amputed to remove 1-6 hours of data both at random and over mealtimes (breakfast, lunch and dinner). Absolute percent errors (MAPE) and intraclass correlation coefficients (ICC) were calculated to evaluate agreement and reliability. Thirty-two (91%) participants provided at least one complete day (24-hours) of data (age: 44.8±8.6 years, female: 18 (56%); mean fasting glucose: 5.0±0.6 mmol/L). Mean and CONGA (60 minutes) were robust to data loss (MAPE ≤3%). Larger errors were calculated for standard deviation, coefficient of variation (CV) and MAGE at increasing missingness (MAPE 2-10%, 2-9% and 4-18%, respectively). ICC decreased as missing data increased, with most indicating excellent reliability (>0.9) apart from certain MAGE ICC, which indicated good reliability (0.84-0.9). Researchers and clinicians should be aware of the potential for larger errors when reporting standard deviation, CV and MAGE at higher rates of data loss in nondiabetic populations. But where mean and CONGA are of interest, data loss is less of a concern. Novelty: As research now utilises flash glucose monitoring as behavioural change tools in nondiabetic populations, it is important to consider the influence of missing data. Glycaemic variability indices of mean and CONGA are robust to data loss, but standard deviation, CV and MAGE are influenced at higher rates of missingness

    Examining the Use of Glucose and Physical Activity Self-Monitoring Technologies in Individuals at Moderate to High Risk of Developing Type 2 Diabetes: Randomized Trial

    No full text
    Background: Self-monitoring of behavior (namely, diet and physical activity) and physiology (namely, glucose) has been shown to be effective in type 2 diabetes (T2D) and prediabetes prevention. By combining self-monitoring technologies, the acute physiological consequences of behaviors could be shown, prompting greater consideration to physical activity levels today, which impact the risk of developing diabetes years or decades later. However, until recently, commercially available technologies have not been able to show individuals the health benefits of being physically active. Objective: The objective of this study was to examine the usage, feasibility, and acceptability of behavioral and physiological self-monitoring technologies in individuals at risk of developing T2D. Methods: A total of 45 adults aged .40 years and at moderate to high risk of T2D were recruited to take part in a 3-arm feasibility trial. Each participant was provided with a behavioral (Fitbit Charge 2) and physiological (FreeStyle Libre flash glucose monitor) monitor for 6 weeks, masked according to group allocation. Participants were allocated to glucose feedback (4 weeks) followed by glucose and physical activity (biobehavioral) feedback (2 weeks; group 1), physical activity feedback (4 weeks) followed by biobehavioral feedback (2 weeks; group 2), or biobehavioral feedback (6 weeks; group 3). Participant usage (including time spent on the apps and number of glucose scans) was the primary outcome. Secondary outcomes were the feasibility (including recruitment and number of sensor displacements) and acceptability (including monitor wear time) of the intervention. Semistructured qualitative interviews were conducted at the 6-week follow-up appointment. Results: For usage, time spent on the Fitbit and FreeStyle Libre apps declined over the 6 weeks for all groups. Of the FreeStyle Libre sensor scans conducted by participants, 17% (1798/10,582) recorded rising or falling trends in glucose, and 24% (13/45) of participants changed .1 of the physical activity goals. For feasibility, 49% (22/45) of participants completed the study using the minimum number of FreeStyle Libre sensors, and a total of 41 sensors were declared faulty or displaced. For acceptability, participants wore the Fitbit for 40.1 (SD 3.2) days, and 20% (9/45) of participants and 53% (24/45) of participants were prompted by email to charge or sync the Fitbit, respectively. Interviews unearthed participant perceptions on the study design by suggesting refinements to the eligibility criteria and highlighting important issues about the usability, wearability, and features of the technologies. Conclusions: Individuals at risk of developing T2D engaged with wearable digital health technologies providing behavioral and physiological feedback. Modifications are required to both the study and to commercially available technologies to maximize the chances of sustained usage and behavior change. The study and intervention were feasible to conduct and acceptable to most participants. Trial Registration: International Standard Randomized Controlled Trial Number (ISRCTN) 17545949; isrctn.com/ISRCTN17545949
    corecore