43 research outputs found

    Non-universal weak antilocalization effect in cubic topological Kondo insulators

    Full text link
    We study the quantum correction to conductivity on the surface of cubic topological Kondo insulators with multiple Dirac bands. We consider the model of time-reversal invariant disorder which induces the scattering of the electrons within the Dirac bands as well as between the bands. When only intraband scattering is present we find three long-range diffusion modes which lead to weak antilocalization correction to conductivity, which remains independent of the microscopic details such as Fermi velocities and relaxation times. Interband scattering gaps out two diffusion modes leaving only one long-range mode. We find that depending on the value of the phase coherence time, either three or only one long-range diffusion modes contribute to weak localization correction rendering the quantum correction to conductivity non-universal. We provide an interpretation for the results of the recent transport experiments on samarium hexaboride where weak antilocalization has been observed.Comment: 15 pages, 7 figure

    Transport anomalies in multiband superconductors near quantum critical point

    Full text link
    We study the effects of quantum fluctuations on the transport properties of multiband superconductors near a pair-breaking quantum critical point. For this purpose, we consider a minimal model of the quantum phase transition in a system with two nested two-dimensional Fermi surfaces. Under the assumption that doping the system adds nonmagnetic impurities but does not change the densities of carriers, we include disorder potentials that render both intra- and interband collisions. Interband scattering leads to full suppression of the unconventional s±s^{\pm} superconducting order similar to the effect of paramagnetic impurities in isotropic single-band superconductors. We use the diagrammatic technique of quantum field theory to compute the corrections to electrical conductivity in a normal state due to superconducting fluctuations in the entire low-temperature quantum regime. We show that the sign of the conductivity correction depends on how the quantum critical point is approached in the phase diagram. We contrast our findings to existing approaches to this problem based on the renormalization group, time-dependent Ginzburg-Landau phenomenology, and effective bosonic action field theories.Comment: 43 pages, 12 figures, 4 table
    corecore