7 research outputs found

    Towards Large Multi-scale Particle Simulations with Conjugate Heat Transfer on Heterogeneous Super Computers

    No full text
    We present numerical methods based on hierarchical Cartesian grids for the simulation of particle flows of different length scales. These include Eulerian-Lagrangian approaches for fully resolved moving particles with conjugate heat-transfer as well as one-way coupled Lagrangian particle models for large-scale particle simulations. The domain decomposition of all phases involved is performed on a joint hierarchical Cartesian grid where the individual cells can belong to one or more sub-grids discretizing different physics, such that numerical methods can operate independently on these sub-sets of the joint mesh to solve, e.g., the Navier-Stokes equations, the heat equation, or the particle motion. Due to the wide range of length scales involved, we first demonstrate the scalability of our automatic mesh generation approach. We then proceed to detail the method for fully-resolved particle simulation and the first steps towards its porting to heterogeneous supercomputers. Finally, we detail the parallelization strategy for the particle motion used by large scale one-way Lagrangian particle simulations

    Applications

    No full text
    corecore