8 research outputs found

    Signalmechanismen des anoxischen Preconditionings an isolierten Kardiomyozyten der adulten Ratte

    Get PDF
    Bei Unterbrechung des koronaren Blutflusses entsteht ein Herzinfarkt. Frühzeitige Reperfusion kann das Ausmaß der ischämischen Myokardschädigung verringern. Allerdings kann auch die Reperfusion selbst zum Gewebeschaden beitragen (Reperfusionsschaden). Unter ischämischen Bedingungen kommt es zu einer zytosolischen Akkumulation von H+, Na+ und Ca2+ in den Kardiomyozyten. Unter Reperfusionsbedingungen können hohe zytosolische Ca2+-Konzentrationen eine Hyperkontraktur der Zellen auslösen. Ischämisch-reperfundiertes Myokard kann durch ischämisches Preconditioning vor den erwähnten Schäden geschützt werden. Ischämisches Preconditioning bezeichnet das Vorschalten kurzer Ischämieepisoden vor die anhaltende Ischämie. Ziel der Arbeit war, den Protektionsmechanismus eines Anoxie-Preconditioning-Protokolls auf isolierte Herzmuskelzellen unter simulierter Ischämie-Reperfusion zu untersuchen. Adulte Kardiomyozyten der Ratte wurden für 60 Minuten bei pH 6,4 anoxisch inkubiert (simulierte Ischämie) und dann für 20 Minuten bei pH 7,4 reoxigeniert (simulierte Reperfusion). Anoxisches Preconditioning wurde durch Vorschalten einer 10minütigen Anoxiephase erreicht. Es verringerte die unter anhaltender Anoxie beobachtete Na+- und Ca2+-Akkumulation und die bei Reoxigenierung auftretende Hyperkontraktur. Der Effekt des anoxischen Preconditioning war bei Hemmung der Proteinkinase C verstärkt und wurde bei zusätzlicher Hemmung von Proteinphosphatasen aufgehoben. Die Ergebnisse weisen daraufhin, daß ein protektiver Effekt von anoxischem Preconditioning durch Aktivierung bestimmter Proteinphosphatasen vermittelt wird und durch Aktivierung bestimmter Isoformen der Proteinkinase C maskiert werden kann. Die Ergebnisse zeigen, daß Proteinphosphatasen einen interessanten Angriffspunkt für neue Protektionsstrategien des ischämisch-reperfundierten Myokards darstellen, z.B. in der Therapie des Herzinfarktes oder in der KardiochirurgieInterruption of coronary perfusion leads to myocardial infarction. Early reperfusion is able to reduce the degree of myocardial injury, but reperfusion itself can also contribute to tissue damage (reperfusion-injury). Under ischemic conditions, a cytosolic accumulation of H+, Na+ und Ca2+ develops in cardiomyocytes. Under conditions of reperfusion, high levels of cytosolic Ca2+ can trigger a hypercontracture of cells. Ischemic-reperfused myocardium can be protected by ischemic preconditioning. Ischemic Preconditioning means the exposure of cells to brief ischemic episodes before sustained ischemia occurs. The aim of this study was to investigate the protective mechanism of an anoxia-preconditioning-protocol on isolated cardiomyocytes under simulated ischemia-reperfusion. Adult cardiomyocytes of the rat were incubated anoxically for 60 min at pH 6.4 (simulated ischemia) and thereafter reoxygenated for 20 min at pH 7.4 (simulated reperfusion). Anoxic preconditioning was achieved by exposing cells to a preceding 10 min period of anoxia. This anoxic preconditioning attenuated Na+- and Ca2+-accumulation under sustained anoxia and hypercontracture observed under reoxygenation. The effect of anoxic preconditioning was augmented by inhibition of protein kinase C and abolished by additional inhibition of protein phosphatases. These results suggest that a protective effect of anoxic preconditioning is mediated through activation of certain protein phosphatases and can be masked by activation of certain protein kinase C -isoforms. The results of this study show that taking influence on protein phosphatases is a promising approach to new protective strategies for ischemic-reperfused myocardium, e.g. in the treatment of myocardial infarction or in cardiac surgery

    Low mechano-afferent fibers reduce thermal pain but not pain intensity in CRPS

    No full text
    Background!#!Human hairy (not glabrous skin) is equipped with a subgroup of C-fibers, the C-tactile (CT) fibers. Those do not mediate pain but affective aspects of touch. CT-fiber-activation reduces experimental pain if they are intact. In this pilot study we investigated pain modulating capacities of CT-afferents in CRPS.!##!Methods!#!10 CRPS-patients (mean age 33 years, SEM 3.3) and 11 healthy controls (mean age 43.2 years, SEM 3.9) participated. CT-targeted-touch (brush stroking, velocity: 3 cm/s) was applied on hairy and glabrous skin on the affected and contralateral limb. Patients rated pleasantness of CT-targeted-touch (anchors: 1 'not pleasant'-4 'very pleasant') twice daily on 10 days. Pain intensity (NRS: 0 'no pain' - 10 'worst pain imaginable') was assessed before, 0, 30, 60 and 120 min after each CT-stimulation. To assess sensory changes, quantitative-sensory-testing was performed at the beginning and the end of the trial period.!##!Results!#!CT-targeted-touch was felt more pleasant on the healthy compared to the affected limb on hairy (p < 0.001) and glabrous skin (p 0.002), independent of allodynia. In contrast to healthy controls patients felt no difference between stimulating glabrous and hairy skin on the affected limb. Thermal pain thresholds increased after CT-stimulation on the affected limb (cold-pain-threshold: p 0.016; heat-pain-threshold: p 0.033).!##!Conclusions!#!CT-stimulation normalizes thermal pain thresholds but has no effect on the overall pain in CRPS. Therefore, pain modulating properties of CT-fibers might be too weak to alter chronic pain in CRPS. Moreover, CT-fibers appear to lose their ability to mediate pleasant aspects of touch in CRPS

    The brain as a “hyper-network”: the key role of neural networks as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics

    No full text
    corecore