20 research outputs found

    Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield

    Get PDF
    Copyright © 2011 American Institute of PhysicsPhase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co50Fe50(0.7)/Ni90Fe10(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L-3 edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co50Fe50(0.7)/Ni90Fe10(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie
    corecore