1,698 research outputs found

    Shocked Gas in IRAS F17207-0014: ISM Collisions and Outflows

    Get PDF
    We combine optical and near-infrared AO-assisted integral field observations of the merging ULIRG IRAS F17207-0014 from the Wide-Field Spectrograph (WiFeS) and Keck/OSIRIS. The optical emission line ratios [N II]/Hα\alpha, [S II]/Hα\alpha, and [O I]/Hα\alpha reveal a mixing sequence of shocks present throughout the galaxy, with the strongest contributions coming from large radii (up to 100% at \sim5 kpc in some directions), suggesting galactic-scale winds. The near-infrared observations, which have approximately 30 times higher spatial resolution, show that two sorts of shocks are present in the vicinity of the merging nuclei: low-level shocks distributed throughout our field-of-view evidenced by an H2_{2}/Brγ\gamma line ratio of \sim0.6-4, and strong collimated shocks with a high H2_{2}/Brγ\gamma line ratio of \sim4-8, extending south from the two nuclear disks approximately 400 pc (\sim0.5 arcsec). Our data suggest that the diffuse shocks are caused by the collision of the interstellar media associated with the two progenitor galaxies and the strong shocks trace the base of a collimated outflow coming from the nucleus of one of the two disks.Comment: accepted to MNRA

    NYU-VAGC: a galaxy catalog based on new public surveys

    Full text link
    Here we present the New York University Value-Added Galaxy Catalog (NYU-VAGC), a catalog of local galaxies (mostly below a redshift of about 0.3) based on a set of publicly-released surveys (including the 2dFGRS, 2MASS, PSCz, FIRST, and RC3) matched to the Sloan Digital Sky Survey (SDSS) Data Release 2. Excluding areas masked by bright stars, the photometric sample covers 3514 square degrees and the spectroscopic sample covers 2627 square degrees (with about 85% completeness). Earlier, proprietary versions of this catalog have formed the basis of many SDSS investigations of the power spectrum, correlation function, and luminosity function of galaxies. We calculate and compile derived quantities (for example, K-corrections and structural parameters for galaxies). The SDSS catalog presented here is photometrically recalibrated, reducing systematic calibration errors across the sky from about 2% to about 1%. We include an explicit description of the geometry of the catalog, including all imaging and targeting information as a function of sky position. Finally, we have performed eyeball quality checks on a large number of objects in the catalog in order to flag deblending and other errors. This catalog is complementary to the SDSS Archive Servers, in that NYU-VAGC's calibration, geometrical description, and conveniently small size are specifically designed for studying galaxy properties and large-scale structure statistics using the SDSS spectroscopic catalog.Comment: accepted by AJ; full resolution version available at http://sdss.physics.nyu.edu/vagc/va_paper.ps; data files available at http://sdss.physics.nyu.edu/vagc

    The Ursinus Weekly, April 17, 1975

    Get PDF
    Dean Harris runs national conference • New Whitian members named and honored • Travelin\u27 8 hits U.C. • Ursinus can be fun believe it or not! • Another look at Dutch • Ursinus\u27 cost is lowest • New CCC chosen • Band concert • Zoo story • Editorial: Opening comments • Letters to the editor: Open dorms?; Rerun; Rec Day thanks • Focus: Rich Fair • Forum review: Gundersheimer on Michelangelo\u27s art • A day on Wall Street • Chaplain\u27s corner: Managing a life full of hidden meanings • Baseball opens • Track team wins two • NBA playoff picture • Tennis time • Intramural winnershttps://digitalcommons.ursinus.edu/weekly/1035/thumbnail.jp

    Impact of Warming on Greenhouse Gas Production and Microbial Diversity in Anoxic Peat From a Sphagnum-Dominated Bog (Grand Rapids, Minnesota, United States)

    Get PDF
    Climate warming is predicted to increase heterotrophic metabolism in northern peatland soils leading to enhanced greenhouse gas emissions. However, the specific relationships between temperature and the greenhouse gas producing microbial communities are poorly understood. Thus, in this study, the temperature dependence of carbon dioxide (CO2) and methane (CH4) production rates along with abundance and composition of microbial communities were investigated in peat from a Sphagnum-dominated peatland, S1 bog (Minnesota, United States). Whereas CH4 production rates increased with temperature up to 30°C, CO2 production did not, resulting in a lower CO2:CH4 ratio with increasing temperature. CO2 production showed both psychrophilic and mesophilic maxima at 4 and 20°C, respectively, and appears to be mediated by two anaerobic microbial communities, one that operates under psychrophilic conditions that predominate for much of the year, and another that is more active under warmer conditions during the growing season. In incubations at 10°C above the ambient range, members of the Clostridiaceae and hydrogenotrophic methanogens of the Methanobacteriaceae dominated. Moreover, a significant negative correlation between temperature and microbial diversity was observed. Results indicate that the potential consequences of warming surface peat in northern peatlands include a large stimulation in CH4 production and a significant loss of microbial diversity

    Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    Full text link
    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 μ\mum. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the HH-band to be Δm=9.23±0.06\Delta m = 9.23\pm0.06 in laboratory measurements and Δm=9.39±0.11\Delta m = 9.39\pm 0.11 using on-sky observations. Laboratory measurements for the YY, JJ, K1K1 and K2K2 filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in HH-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.Comment: 15 pages, 6 figures. Proceedings of the SPIE, 9147-30

    A Comparison of Neural Decoding Methods and Population Coding Across Thalamo-Cortical Head Direction Cells

    Get PDF
    Head direction (HD) cells, which fire action potentials whenever an animal points its head in a particular direction, are thought to subserve the animal’s sense of spatial orientation. HD cells are found prominently in several thalamo-cortical regions including anterior thalamic nuclei, postsubiculum, medial entorhinal cortex, parasubiculum, and the parietal cortex. While a number of methods in neural decoding have been developed to assess the dynamics of spatial signals within thalamo-cortical regions, studies conducting a quantitative comparison of machine learning and statistical model-based decoding methods on HD cell activity are currently lacking. Here, we compare statistical model-based and machine learning approaches by assessing decoding accuracy and evaluate variables that contribute to population coding across thalamo-cortical HD cells

    Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico

    Get PDF
    This study examines the sensitivity of the North American warm season diurnal cycle of precipitation to changes in horizontal resolution in three atmospheric general circulation models, with a primary focus on how the parameterized moist processes respond to improved resolution of topography and associated local/regional circulations on the diurnal time scale. It is found that increasing resolution (from approximately 2?? to 1/2?? in latitude-longitude) has a mixed impact on the simulated diurnal cycle of precipitation. Higher resolution generally improves the initiation and downslope propagation of moist convection over the Rockies and the adjacent Great Plains. The propagating signals, however, do not extend beyond the slope region, thereby likely contributing to a dry bias in the Great Plains. Similar improvements in the propagating signals are also found in the diurnal cycle over the North American monsoon region as the models begin to resolve the Gulf of California and the surrounding steep terrain. In general, the phase of the diurnal cycle of precipitation improves with increasing resolution, though not always monotonically. Nevertheless, large errors in both the phase and amplitude of the diurnal cycle in precipitation remain even at the highest resolution considered here. These errors tend to be associated with unrealistically strong coupling of the convection to the surface heating and suggest that improved simulations of the diurnal cycle of precipitation require further improvements in the parameterizations of moist convection processes.open37

    KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data

    Get PDF
    We present measurements of parameters of the 3-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey. The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the 3-dimensional power spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/- 0.06 (statistical errors only), for a flat Universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the 3D power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sample size and limiting magnitude. We find that the impact of most of these uncertainties stay within the 2-sigma uncertainties of our fiducial result.Comment: Fig 1 postscript problem correcte

    Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites

    Get PDF
    A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates
    corecore