41 research outputs found

    Linear and Nonlinear Heart Rate Variability Indexes in Clinical Practice

    No full text
    Biological organisms have intrinsic control systems that act in response to internal and external stimuli maintaining homeostasis. Human heart rate is not regular and varies in time and such variability, also known as heart rate variability (HRV), is not random. HRV depends upon organism's physiologic and/or pathologic state. Physicians are always interested in predicting patient's risk of developing major and life-threatening complications. Understanding biological signals behavior helps to characterize patient's state and might represent a step toward a better care. The main advantage of signals such as HRV indexes is that it can be calculated in real time in noninvasive manner, while all current biomarkers used in clinical practice are discrete and imply blood sample analysis. In this paper HRV linear and nonlinear indexes are reviewed and data from real patients are provided to show how these indexes might be used in clinical practice

    Linear and Nonlinear Heart Rate Variability Indexes in Clinical Practice

    No full text
    Biological organisms have intrinsic control systems that act in response to internal and external stimuli maintaining homeostasis. Human heart rate is not regular and varies in time and such variability, also known as heart rate variability (HRV), is not random. HRV depends upon organism's physiologic and/or pathologic state. Physicians are always interested in predicting patient's risk of developing major and life-threatening complications. Understanding biological signals behavior helps to characterize patient's state and might represent a step toward a better care. The main advantage of signals such as HRV indexes is that it can be calculated in real time in noninvasive manner, while all current biomarkers used in clinical practice are discrete and imply blood sample analysis. In this paper HRV linear and nonlinear indexes are reviewed and data from real patients are provided to show how these indexes might be used in clinical practice

    Reshaping the DEMO Tokamak’s TF Coil with high fidelity Multiphysics CAE and advanced mesh morphing

    No full text
    The next phase in the EU’s ambitious nuclear fusion power generation project is the construction of a DEMOnstration powerplant. This represents the first step towards the creation of a commercial power plant and is drawing on the combined efforts of large teams of scientists and engineers across various research units. This article describes the Multiphysics optimization procedure undertaken to ensure the best compromise between electromagnetic and structural compliance for the Toroidal Field coils of the Advanced Divertor Configurations of the toroidal chamber, that holds the plasma in which the fusion reaction takes place. The TF coils are subjected to enormous Lorentz forces that are transferred to robust steel casings that hold the TF coils in place. It has been learnt that these casings should perform the dual function of shaping the super-conducting loops appropriately, and bearing the loads within a reasonable margin of safety. However, preliminary stress analyses revealed that their initial shape had structural deficiencies. FEM analyses and mesh morphing were used to optimize the shapes to the best compromise between the two functions

    Structural optimisation of the DEMO alternative divertor configurations based on FE and RBF mesh morphing

    No full text
    The DEMO tokamak exhibits extraordinary complexity due to the constraints and requirements pertaining to different fields of physics and engineering. The multidisciplinary nature of the DEMO system makes its design phase extremely challenging since different and often opposite requirements need to be accounted for. Toroidal field (TF) coils generate the toroidal magnetic field required to magnetically confine the plasma particles and support at the same time the poloidal field coils. They must bear tremendous loads deriving from electromagnetic interactions between the coil currents and the generated magnetic field. An efficient tokamak design aims at minimizing the energy stored in its magnetic field and hence at reducing the toroidal volume within the TF coils whose shape would hence ideally mimic co-centrically the shape of the plasma. In order to bear the enormous forces a D-shape is most suitable for the TF coils as it allows them to resist the very large compression on the inner side and to carry the electro-magnetic (EM) pressure mainly by membrane stresses preventing large bending to occur on the outer side. At the same time the divertor structures must fit within the TF coils and this requires adaptations of the TF coil shape in the case of so-called advanced divertor configurations (ADCs), which require larger divertor structures. This article shows the TF coils adapted to ADCs using a structural optimisation procedure applied to the reference shape. The introduced strategy takes as structural optimum the iso-stress profile associated to each coil. A continuous transformation, based on radial basis functions mesh morphing, turns the baseline finite element (FE) model into its iso-stress counterpart, with a series of intermediate configurations available for electromagnetic and structural investigations as output. The adopted strategy allowed to determine, for each of the ADC cases, a candidate shape. Static membrane stress levels during magnetization could be reduced significantly from more than 700 MPa to below 450 MPa
    corecore