8 research outputs found

    Sepsis in cancer patients residing in Zimbabwe: Spectrum of bacterial and fungal aetiologies and their antimicrobial susceptibility patterns.

    Get PDF
    Background Cancer and sepsis comorbidity is a major public health problem in most parts of the world including Zimbabwe. The microbial aetiologies of sepsis and their antibiograms vary with time and locations. Knowledge on local microbial aetiologies of sepsis and their susceptibility patterns is critical in guiding empirical antimicrobial treatment choices. Methods This was a descriptive cross-sectional study which determined the microbial aetiologies of sepsis from blood cultures of paediatric and adult cancer patients obtained between July 2016 and June 2017. The TDR-X120 blood culture system and TDR 300B auto identification machine were used for incubation of blood culture bottles and identification plus antimicrobial susceptibility testing, respectively. Results A total of 142 participants were enrolled; 50 (35.2%) had positive blood cultures, with 56.0% Gram positive, 42.0% Gram-negative bacteria and 2.0% yeast isolated. Common species isolated included coagulase negative Staphylococcus spp. (CoNS) (22.0%), E. coli (16.0%), K. pneumoniae (14.0%), E. faecalis (14.0%) and S. aureus (8.0%). Gram-negative isolates exhibited high resistance to gentamicin (61.9%) and ceftriaxone (71.4%) which are the empiric antimicrobial agents used in our setting. Amikacin and meropenem showed 85.7 and 95.2% activity respectively against all Gram-negative isolates, whilst vancomycin and linezolid were effective against 96.2 and 100.0% of all Gram-positive isolates respectively. We isolated 10 (66.7%) extended spectrum β-lactamase (ESBL) amongst the E. coli and K. pneumoniae isolates. Ten (66.7%) of the Staphylococcus spp. were methicillin resistant. Conclusions CoNS, E. coli, K. pneumoniae, E. faecalis and S. aureus were the major microbial drivers of sepsis amongst cancer patients in Zimbabwe. Most isolates were found to be resistant to commonly used empirical antibiotics, with isolates exhibiting high levels of ESBL and methicillin resistance carriage. A nationwide survey on microbial aetiologies of sepsis and their susceptibility patterns would assist in the guidance of effective sepsis empiric antimicrobial treatment among patients with cancer

    Distinctive Features of Surface-Anchored Proteins of Streptococcus agalactiae Strains from Zimbabwe Revealed by PCR and Dot Blotting

    No full text
    Post print original as published on http://cvi.asm.org/,The distribution of capsular polysaccharide (CPS) types and subtypes (serovariants) among 121 group B streptococcus (GBS) strains from Zimbabwe was examined. PCR was used for the detection of both CPS types and the surface-anchored and strain-variable proteins C , C , Alp1, Alp2, Alp3, R4/Rib, and Alp4. The R3 protein was detected by an antibody-based method using monoclonal anti-R3 antibody in dot blotting. The CPS types detected, Ia (15.7% of strains), Ib (11.6%), II (8.3%), III (38.8%), V (24.0%), and nontypeable (1.7%), were essentially as expected on the basis of data from Western countries. The type V strains showed distinctive features with respect to protein markers in that Alp3 was detected in only 6.9% of the isolates while R3 occurred in 75.9% and R4/Rib occurred in 37.9% of the isolates. R3 occurred nearly always in combination with one of the alpha-like (Alp) proteins, and it was the third most common of the proteins studied. These results show that type V GBS strains from Zimbabwe differed from type V strains from other geographical areas and also emphasize the importance of the R3 protein in GBS serotyping and its potential importance in the immunobiology of GBS, including a potential role in a future GBS vaccine

    Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples

    Get PDF
    Background Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women. Methods A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13–35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0. Results Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). Conclusion The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes

    Putative Novel Surface-Exposed Streptococcus agalactiae Protein Frequently Expressed by the Group B Streptococcus from Zimbabweâ–¿

    No full text
    Group B streptococci (GBS) express a variety of surface-exposed and strain-variable proteins which function as phenotypic markers and as antigens which are able to induce protective immunity in experimental settings. Among these proteins, the chimeric and immunologically cross-reacting alpha-like proteins are particularly important. Another protein, R3, which has been less well studied, occurred at a frequency of 21.5% in GBS from Zimbabwe and, notably, occurred in serotype V strains at a frequency of 75.9%. Working with rabbit antiserum raised against the R3 reference strain ATCC 49447 (strain 10/84; serotype V/R3) to detect the expression of the R3 protein, we recorded findings which suggested that strain 10/84 expressed a strain-variable protein antigen, in addition to R3. The antigen was detected by various enzyme-linked immunosorbent assay-based tests by using acid extract antigens or GBS whole-cell coats and by whole-cell-based Western blotting. We named the putative novel antigen the Z antigen. The Z antigen was a high-molecular-mass antigen that was susceptible to degradation by pepsin and trypsin but that was resistant to m-periodate oxidation and failed to show immunological cross-reactivity with any of a variety of other GBS protein antigens. The Z antigen was expressed by 33/121 (27.2%) of strains of a Zimbabwean GBS strain collection and by 64.2% and 72.4% of the type Ib and type V strains, respectively, and was occasionally expressed by GBS of other capsular serotypes. Thus, the putative novel GBS protein named Z showed distinct capsular antigen associations and presented as an important phenotypic marker in GBS from Zimbabwe. It may be an important antigen in GBS from larger areas of southern Africa. Its prevalence in GBS from Western countries is not known

    Streptococcus agalactiae Alpha-Like Protein 1 Possesses Both Cross-Reacting and Alp1-Specific Epitopesâ–¿

    No full text
    Most isolates of group B streptococci (GBS) express an alpha-like protein (Alp), Cα (encoded by bca), Alp1 (also called epsilon; alp1), Alp2 (alp2), Alp3 (alp3), Alp4 (alp4), or R4/Rib (rib). These proteins are chimeras with a mosaic structure and with antigenic determinants with variable immunological cross-reactivities between the Alps, including Alp1 and Cα cross-reactivity. This study focused on antigenic domains of Alp1, studied by using rabbit antisera in immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay (ELISA)-based tests and whole cells of GBS or trypsin-extracted and partially purified antigens from the strains A909 (serotype Ia/Cα, Cβ) and 335 (Ia/Alp1). Alp1 and Cα shared an antigenic determinant, Alp1/Cα common, not harbored by other Alps, probably located in the Alp1 and Cα repeat units, as these units are nearly identical in genomic sequence. An antigenic Alp1 determinant was Alp1 specific and was most likely located in the N-terminal unit of Alp1 in which an Alp1-specific primer site for PCR is also located. In addition, Alp1 possessed a domain with low immunogenicity which cross-reacted immunologically with Alp2 and Alp3, with unknown location in Alp1. Alp1 was partially degraded by trypsin during antigen extraction but with the antigenic domains preserved. The results indicate that Cα and Alp1 are immunologically related in the same manner that R4 (Rib) and Alp3 are related. The domain called Alp1 specific should be important in GBS serotyping as a surface-anchored serosubtype marker. The Alp1/Cα common determinant may be of prime interest as an immunogenic domain in a GBS vaccine
    corecore