38 research outputs found

    Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages

    Get PDF
    BACKGROUND: Release of immuno-regulatory cytokines and chemokines during inflammatory response is mediated by a complex signaling network. Multiple stimuli produce different signals that generate different cytokine responses. Current knowledge does not provide a complete picture of these signaling pathways. However, using specific markers of signaling pathways, such as signaling proteins, it is possible to develop a 'coarse-grained network' map that can help understand common regulatory modules for various cytokine responses and help differentiate between the causes of their release. RESULTS: Using a systematic profiling of signaling responses and cytokine release in RAW 264.7 macrophages made available by the Alliance for Cellular Signaling, an analysis strategy is presented that integrates principal component regression and exhaustive search-based model reduction to identify required signaling factors necessary and sufficient to predict the release of seven cytokines (G-CSF, IL-1α, IL-6, IL-10, MIP-1α, RANTES, and TNFα) in response to selected ligands. This study provides a model-based quantitative estimate of cytokine release and identifies ten signaling components involved in cytokine production. The models identified capture many of the known signaling pathways involved in cytokine release and predict potentially important novel signaling components, like p38 MAPK for G-CSF release, IFNγ- and IL-4-specific pathways for IL-1a release, and an M-CSF-specific pathway for TNFα release. CONCLUSION: Using an integrative approach, we have identified the pathways responsible for the differential regulation of cytokine release in RAW 264.7 macrophages. Our results demonstrate the power of using heterogeneous cellular data to qualitatively and quantitatively map intermediate cellular phenotypes

    Developing microRNA screening as a functional genomics tool for disease research

    Get PDF
    Originally discovered as regulators of developmental timing in C. elegans, microRNAs (miRNAs) have emerged as modulators of nearly every cellular process, from normal development to pathogenesis. With the advent of whole genome libraries of miRNA mimics suitable for high throughput screening, it is possible to comprehensively evaluate the function of each member of the miRNAome in cell-based assays. Since the relatively few microRNAs in the genome are thought to directly regulate a large portion of the proteome, miRNAome screening, coupled with the identification of the regulated proteins, might be a powerful new approach to gaining insight into complex biological processes

    Integration of lipidomics and transcriptomics data towards a systems biology model of sphingolipid metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sphingolipids play important roles in cell structure and function as well as in the pathophysiology of many diseases. Many of the intermediates of sphingolipid biosynthesis are highly bioactive and sometimes have antagonistic activities, for example, ceramide promotes apoptosis whereas sphingosine-1-phosphate can inhibit apoptosis and induce cell growth; therefore, quantification of the metabolites and modeling of the sphingolipid network is imperative for an understanding of sphingolipid biology.</p> <p>Results</p> <p>In this direction, the LIPID MAPS Consortium is developing methods to quantitate the sphingolipid metabolites in mammalian cells and is investigating their application to studies of the activation of the RAW264.7 macrophage cell by a chemically defined endotoxin, Kdo<sub>2</sub>-Lipid A. Herein, we describe a model for the C<sub>16</sub>-branch of sphingolipid metabolism (i.e., for ceramides with palmitate as the N-acyl-linked fatty acid, which is selected because it is a major subspecies for all categories of complex sphingolipids in RAW264.7 cells) integrating lipidomics and transcriptomics data and using a two-step matrix-based approach to estimate the rate constants from experimental data. The rate constants obtained from the first step are further refined using generalized constrained nonlinear optimization. The resulting model fits the experimental data for all species. The robustness of the model is validated through parametric sensitivity analysis.</p> <p>Conclusions</p> <p>A quantitative model of the sphigolipid pathway is developed by integrating metabolomics and transcriptomics data with legacy knowledge. The model could be used to design experimental studies of how genetic and pharmacological perturbations alter the flux through this important lipid biosynthetic pathway.</p

    Topological and functional comparison of community detection algorithms in biological networks

    No full text
    Abstract Background Community detection algorithms are fundamental tools to uncover important features in networks. There are several studies focused on social networks but only a few deal with biological networks. Directly or indirectly, most of the methods maximize modularity, a measure of the density of links within communities as compared to links between communities. Results Here we analyze six different community detection algorithms, namely, Combo, Conclude, Fast Greedy, Leading Eigen, Louvain and Spinglass, on two important biological networks to find their communities and evaluate the results in terms of topological and functional features through Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology term enrichment analysis. At a high level, the main assessment criteria are 1) appropriate community size (neither too small nor too large), 2) representation within the community of only one or two broad biological functions, 3) most genes from the network belonging to a pathway should also belong to only one or two communities, and 4) performance speed. The first network in this study is a network of Protein-Protein Interactions (PPI) in Saccharomyces cerevisiae (Yeast) with 6532 nodes and 229,696 edges and the second is a network of PPI in Homo sapiens (Human) with 20,644 nodes and 241,008 edges. All six methods perform well, i.e., find reasonably sized and biologically interpretable communities, for the Yeast PPI network but the Conclude method does not find reasonably sized communities for the Human PPI network. Louvain method maximizes modularity by using an agglomerative approach, and is the fastest method for community detection. For the Yeast PPI network, the results of Spinglass method are most similar to the results of Louvain method with regard to the size of communities and core pathways they identify, whereas for the Human PPI network, Combo and Spinglass methods yield the most similar results, with Louvain being the next closest. Conclusions For Yeast and Human PPI networks, Louvain method is likely the best method to find communities in terms of detecting known core pathways in a reasonable time

    Modular and mechanistic changes across stages of colorectal cancer.

    No full text
    BackgroundWhile mechanisms contributing to the progression and metastasis of colorectal cancer (CRC) are well studied, cancer stage-specific mechanisms have been less comprehensively explored. This is the focus of this manuscript.MethodsUsing previously published data for CRC (Gene Expression Omnibus ID GSE21510), we identified differentially expressed genes (DEGs) across four stages of the disease. We then generated unweighted and weighted correlation networks for each of the stages. Communities within these networks were detected using the Louvain algorithm and topologically and functionally compared across stages using the normalized mutual information (NMI) metric and pathway enrichment analysis, respectively. We also used Short Time-series Expression Miner (STEM) algorithm to detect potential biomarkers having a role in CRC.ResultsSixteen Thousand Sixty Two DEGs were identified between various stages (p-value ≤ 0.05). Comparing communities of different stages revealed that neighboring stages were more similar to each other than non-neighboring stages, at both topological and functional levels. A functional analysis of 24 cancer-related pathways indicated that several signaling pathways were enriched across all stages. However, the stage-unique networks were distinctly enriched only for a subset of these 24 pathways (e.g., MAPK signaling pathway in stages I-III and Notch signaling pathway in stages III and IV). We identified potential biomarkers, including HOXB8 and WNT2 with increasing, and MTUS1 and SFRP2 with decreasing trends from stages I to IV. Extracting subnetworks of 10 cancer-relevant genes and their interacting first neighbors (162 genes in total) revealed that the connectivity patterns for these genes were different across stages. For example, BRAF and CDK4, members of the Ser/Thr kinase, up-regulated in cancer, displayed changing connectivity patterns from stages I to IV.ConclusionsHere, we report molecular and modular networks for various stages of CRC, providing a pseudo-temporal view of the mechanistic changes associated with the disease. Our analysis highlighted similarities at both functional and topological levels, across stages. We further identified stage-specific mechanisms and biomarkers potentially contributing to the progression of CRC

    A Cybernetic Approach to Modeling Lipid Metabolism in Mammalian Cells

    No full text
    The goal-oriented control policies of cybernetic models have been used to predict metabolic phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic regulation is driven towards attaining goals that correspond to an organism&rsquo;s survival or displaying a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG) metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A (KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS database. The model parameters were estimated using a two-step hybrid optimization approach. A genetic algorithm was used to determine the population of near optimal parameter values, and a generalized constrained non-linear optimization employing a gradient search method was used to further refine the parameters. We validated our model by predicting an independent data set, the prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic model captures the complex regulation of PG metabolism and provides a reliable description of PG formation
    corecore