183 research outputs found

    Mediterraneo mare interiore: Eugenio Montale e Rafael Alberti, un caso di affinitá mediterranea.

    Get PDF
    Sin resume

    Adipose Tissue Dysfunction in Obesity: Role of Mineralocorticoid Receptor

    Get PDF
    The mineralocorticoid receptor (MR) acts as an essential regulator of blood pressure, volume status, and electrolyte balance. However, in recent decades, a growing body of evidence has suggested that MR may also have a role in mediating pro-inflammatory, pro-oxidative, and pro-fibrotic changes in several target organs, including the adipose tissue. The finding that MR is overexpressed in the adipose tissue of patients with obesity has led to the hypothesis that this receptor can contribute to adipokine dysregulation and low-grade chronic inflammation, alterations that are linked to the development of obesity-related metabolic and cardiovascular complications. Moreover, several studies in animal models have investigated the role of MR antagonists (MRAs) in preventing the metabolic alterations observed in obesity. In the present review we will focus on the potential mechanisms by which MR activation can contribute to adipose tissue dysfunction in obesity and on the possible beneficial effects of MRAs in this setting

    Atrial Fibrillation and Aortic Ectasia as Complications of Primary Aldosteronism: Focus on Pathophysiological Aspects

    Get PDF
    Primary aldosteronism (PA) is the most common cause of secondary hypertension. A growing body of evidence has suggested that, beyond its well-known effects on blood pressure and electrolyte balance, aldosterone excess can exert pro-inflammatory, pro-oxidant and pro-fibrotic effects on the kidney, blood vessels and heart, leading to potentially harmful pathophysiological consequences. In clinical studies, PA has been associated with an increased risk of cardiovascular, cerebrovascular, renal and metabolic complication compared to essential hypertension, including atrial fibrillation (AF) and aortic ectasia. An increased prevalence of AF in patients with PA has been demonstrated in several clinical studies. Aldosterone excess seems to be involved in the pathogenesis of AF by inducing cardiac structural and electrical remodeling that in turn predisposes to arrhythmogenicity. The association between PA and aortic ectasia is less established, but several studies have demonstrated an effect of aldosterone on aortic stiffness, vascular smooth muscle cells and media composition that, in turn, might lead to an increased risk of aortic dilation and dissection. In this review, we focus on the current evidence regarding the potential role of aldosterone excess in the pathogenesis of AF and aortic ectasia

    Neuroendocrine Alterations in Obese Patients with Sleep Apnea Syndrome

    Get PDF
    Obstructive sleep apnea syndrome (OSAS) is a serious, prevalent condition that has significant morbidity and mortality when untreated. It is strongly associated with obesity and is characterized by changes in the serum levels or secretory patterns of several hormones. Obese patients with OSAS show a reduction of both spontaneous and stimulated growth hormone (GH) secretion coupled to reduced insulin-like growth factor-I (IGF-I) concentrations and impaired peripheral sensitivity to GH. Hypoxemia and chronic sleep fragmentation could affect the sleep-entrained prolactin (PRL) rhythm. A disrupted Hypothalamus-Pituitary-Adrenal (HPA) axis activity has been described in OSAS. Some derangement in Thyroid-Stimulating Hormone (TSH) secretion has been demonstrated by some authors, whereas a normal thyroid activity has been described by others. Changes of gonadal axis are common in patients with OSAS, who frequently show a hypogonadotropic hypogonadism. Altogether, hormonal abnormalities may be considered as adaptive changes which indicate how a local upper airway dysfunction induces systemic consequences. The understanding of the complex interactions between hormones and OSAS may allow a multi-disciplinary approach to obese patients with this disturbance and lead to an effective management that improves quality of life and prevents associated morbidity or death

    Primary Aldosteronism and Resistant Hypertension: A Pathophysiological Insight

    Get PDF
    Primary aldosteronism (PA) is a pathological condition characterized by an excessive aldosterone secretion; once thought to be rare, PA is now recognized as the most common cause of secondary hypertension. Its prevalence increases with the severity of hypertension, reaching up to 29.1% in patients with resistant hypertension (RH). Both PA and RH are “high-risk phenotypes”, associated with increased cardiovascular morbidity and mortality compared to non-PA and non-RH patients. Aldosterone excess, as occurs in PA, can contribute to the development of a RH phenotype through several mechanisms. First, inappropriate aldosterone levels with respect to the hydro-electrolytic status of the individual can cause salt retention and volume expansion by inducing sodium and water reabsorption in the kidney. Moreover, a growing body of evidence has highlighted the detrimental consequences of “non-classical” effects of aldosterone in several target tissues. Aldosterone-induced vascular remodeling, sympathetic overactivity, insulin resistance, and adipose tissue dysfunction can further contribute to the worsening of arterial hypertension and to the development of drug-resistance. In addition, the pro-oxidative, pro-fibrotic, and pro-inflammatory effects of aldosterone may aggravate end-organ damage, thereby perpetuating a vicious cycle that eventually leads to a more severe hypertensive phenotype. Finally, neither the pathophysiological mechanisms mediating aldosterone-driven blood pressure rise, nor those mediating aldosterone-driven end-organ damage, are specifically blocked by standard first-line anti-hypertensive drugs, which might further account for the drug-resistant phenotype that frequently characterizes PA patients
    corecore