455 research outputs found

    The Great Observatories Origins Deep Survey

    Get PDF
    The Great Observatories Origins Deep Survey (GOODS) is designed to gather the best and deepest multiwavelength data for studying the formation and evolution of galaxies and active galactic nuclei, the distribution of dark and luminous matter at high redshift, the cosmological parameters from distant supernovae, and the extragalactic background light. The program uses the most powerful space- and ground-based telescopes to cover two fields, each 10'x16', centered on the Hubble Deep Field North and the Chandra Deep Field South, already the sites of extensive observations from X-ray through radio wavelengths. GOODS incorporates 3.6-24 micron observations from a SIRTF Legacy Program, four-band ACS imaging from an HST Treasury Program, and extensive new ground-based imaging and spectroscopy. GOODS data products will be made available on a rapid time-scale, enabling community research on a wide variety of topics. Here we describe the project, emphasizing its application for studying the mass assembly history of galaxies.Comment: 8 pages, 2 figures, to appear in the proceedings of the ESO/USM Workshop "The Mass of Galaxies at Low and High Redshift" (Venice, Italy, October 2001), eds. R. Bender and A. Renzin

    IRAC Deep Survey of COSMOS

    Get PDF
    Over the last four years, we have developed the COSMOS survey field with complete multi-wavelength coverage from radio to X-ray, including a total of 600 hours of Spitzer Legacy time (166 hours IRAC, 460 hours MIPS). Here we propose to deepen the IRAC 3.6 µm and 4.5 µm coverage with 3000 hours over 2.3 deg^2 area included in deep Subaru imaging. This extended mission deep survey will increase the sensitivity by a factor of 3–5. The most important impact will be that the COSMOS survey will then provide extremely sensitive photometric redshifts and stellar mass estimates for approximately a million galaxies out to z~6. We expect these data to detect approximately 1000 objects at z = 6 to 10. The data will also provide excellent temporal coverage for variability studies on timescales from days to the length of the extended mission

    Probing Outflows in z= 1~2 Galaxies through FeII/FeII* Multiplets

    Full text link
    We report on a study of the 2300-2600\AA FeII/FeII* multiplets in the rest-UV spectra of star-forming galaxies at 1.0<z<2.6 as probes of galactic-scale outflows. We extracted a mass-limited sample of 97 galaxies at z~1.0-2.6 from ultra-deep spectra obtained during the GMASS spetroscopic survey in the GOODS South field with the VLT and FORS2. We obtain robust measures of the rest equivalent width of the FeII absorption lines down to a limit of W_r>1.5 \AA and of the FeII* emission lines to W_r>0.5 \AA. Whenever we can measure the systemic redshift of the galaxies from the [OII] emission line, we find that both the FeII and MgII absorption lines are blueshifted, indicative that both species trace gaseous outflows. We also find, however, that the FeII gas has generally lower outflow velocity relative to that of MgII. We investigate the variation of FeII line profiles as a function of the radiative transfer properties of the lines, and find that transitions with higher oscillator strengths are more blueshifted in terms of both line centroids and line wings. We discuss the possibility that FeII lines are suppressed by stellar absorptions. The lower velocities of the FeII lines relative to the MgII doublet, as well as the absence of spatially extended FeII* emission in 2D stacked spectra, suggest that most clouds responsible for the FeII absorption lie close (3~4 kpc) to the disks of galaxies. We show that the FeII/FeII* multiplets offer unique probes of the kinematic structure of galactic outflows.Comment: 53 pages, 22 Figures, accepted for publication in ApJ, revised according to referee comment

    The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey

    Get PDF
    Using the deep Spitzer Infrared Array Camera (IRAC) observations of the Great Observatories Origins Deep Survey (GOODS), we study the stellar masses and star formation histories of galaxies at z approx 6 based on the i_(775)-band dropout sample selected from the GOODS fields. In total, we derive stellar masses for 53 i_(775)-band dropouts that have robust IRAC detections. These galaxies have typical stellar masses of ~10^(10) M_⊙ and typical ages of a couple of hundred million years, consistent with earlier results based on a smaller sample of z ≈ 6 galaxies. The existence of such massive galaxies at z ≈ 6 can be explained by at least one set of N-body simulations of the hierarchical paradigm. We also study 79 i_(775)-band dropouts that are invisible in the IRAC data and find that they are typically less massive by a factor of 10. These galaxies are much bluer than those detected by the IRAC, indicating that their luminosities are dominated by stellar populations with ages ≾ 40 Myr. Based on our mass estimates, we derive a lower limit to the global stellar mass density at z ≈ 6, which is 1.1-6.7 × 10^6 M_⊙ Mpc^(-3). The prospect of detecting the progenitors of the most massive galaxies at yet higher redshifts is explored. We also investigate the implication of our results for reionization and find that the progenitors of the galaxies comparable to those in our sample, even in the most optimized (probably unrealistic) scenario, cannot sustain the reionization for a period longer than ~2 Myr. Thus most of the photons required for reionization must have been provided by other sources, such as the progenitors of the dwarf galaxies that are far below our current detection capability

    The Swift X-ray Telescope Cluster Survey III: Cluster Catalog from 2005-2012 Archival Data

    Get PDF
    We present the Swift X-ray Cluster Survey (SWXCS) catalog obtained using archival data from the X-ray telescope (XRT) on board the Swift satellite acquired from 2005 to 2012, extending the first release of the SWXCS. The catalog provides positions, soft fluxes, and, when possible, optical counterparts for a flux-limited sample of X-ray group and cluster candidates. We consider the fields with Galactic latitude |b| > 20 degree to avoid high HI column densities. We discard all of the observations targeted at groups or clusters of galaxies, as well as particular extragalactic fields not suitable to search for faint extended sources. We finally select ~3000 useful fields covering a total solid angle of ~400 degree^2. We identify extended source candidates in the soft-band (0.5-2keV) images of these fields using the software EXSdetect, which is specifically calibrated for the XRT data. Extensive simulations are used to evaluate contamination and completeness as a function of the source signal, allowing us to minimize the number of spurious detections and to robustly assess the selection function. Our catalog includes 263 candidate galaxy clusters and groups down to a flux limit of 7E-15 erg/cm^2/s in the soft band, and the logN-logS is in very good agreement with previous deep X-ray surveys. The final list of sources is cross-correlated with published optical, X-ray, and SZ catalogs of clusters. We find that 137 sources have been previously identified as clusters, while 126 are new detections. Currently, we have collected redshift information for 158 sources (60% of the entire sample). Once the optical follow-up and the X-ray spectral analysis of the sources are complete, the SWXCS will provide a large and well-defined catalog of groups and clusters of galaxies to perform statistical studies of cluster properties and tests of cosmological models.Comment: 41 pages, 16 figures, 3 tables, published on ApJS in Jan 201

    Steadily Increasing Star Formation Rates in Galaxies Observed at 3 <~ z <~ 5 in the CANDELS/GOODS-S Field

    Full text link
    We investigate the star formation histories (SFHs) of high redshift (3 <~ z <~ 5) star-forming galaxies selected based on their rest-frame ultraviolet (UV) colors in the CANDELS/GOODS-S field. By comparing the results from the spectral-energy-distribution-fitting analysis with two different assumptions about the SFHs --- i.e., exponentially declining SFHs as well as increasing ones, we conclude that the SFHs of high-redshift star-forming galaxies increase with time rather than exponentially decline. We also examine the correlations between the star formation rates (SFRs) and the stellar masses. When the galaxies are fit with rising SFRs, we find that the trend seen in the data qualitatively matches the expectations from a semi-analytic model of galaxy formation. The mean specific SFR is shown to increase with redshift, also in agreement with the theoretical prediction. From the derived tight correlation between stellar masses and SFRs, we derive the mean SFH of star-forming galaxies in the redshift range of 3 <~ z <~ 5, which shows a steep power-law (with power alpha = 5.85) increase with time. We also investigate the formation timescales and the mean stellar population ages of these star-forming galaxies. Our analysis reveals that UV-selected star-forming galaxies have a broad range of the formation redshift. The derived stellar masses and the stellar population ages show positive correlation in a sense that more massive galaxies are on average older, but with significant scatter. This large scatter implies that the galaxies' mass is not the only factor which affects the growth or star formation of high-redshift galaxies.Comment: 31 pages, 8 figures, 2 table

    The Internal Ultraviolet-to-Optical Color Dispersion: Quantifying the Morphological K-Correction

    Full text link
    We present a quantitative measure of the internal color dispersion within galaxies, which quantifies differences in morphology as a function of wavelength. We apply this statistic to a local galaxy sample with archival images at 1500 and 2500 Angstroms from the Ultraviolet Imaging Telescope, and ground-based B-band observations to investigate how the color dispersion relates to global galaxy properties. The intenal color dispersion generally correlates with transformations in galaxy morphology as a function of wavelength, i.e., it quantifies the morphological K-correction. Mid-type spiral galaxies exhibit the highest dispersion in their internal colors, which stems from differences in the bulge, disk, and spiral-arm components. Irregulars and late-type spirals show moderate internal color dispersion, which implies that young stars generally dominate the colors. Ellipticals, lenticulars, and early-type spirals generally have low or negligible internal color dispersion, which indicates that the stars contributing to the UV-to-optical emission have a very homogeneous distribution. We discuss the application of the internal color dispersion to high-redshift galaxies in deep, Hubble Space Telescope images. By simulating local galaxies at cosmological distances, many of the galaxies have luminosities that are sufficiently bright at rest--frame optical wavelengths to be detected within the limits of the currently deepest near-infrared surveys even with no evolution. Under assumptions that the luminosity and color evolution of the local galaxies conform with the measured values of high-redshift objects, we show that galaxies' intrinsic internal color dispersion remains measurable out to z ~ 3.Comment: Accepted for publication in the Astrophysical Journal. 41 pages, 13 figures (3 color). Full resolution version (~8 Mb) available at http://mips.as.arizona.edu/~papovich/papovich_astroph.p

    The Assembly of Diversity in the Morphologies and Stellar Populations of High-Redshift Galaxies

    Full text link
    We have studied the evolution in the morphologies, sizes, stellar-masses, colors, and internal color dispersion (ICD) of galaxies at z=1 and 2.3, using a near-IR, flux-limited catalog for the HDF-N. At z=1 most luminous galaxies have morphologies of early-to-mid Hubble-types, and many show transformations between their rest-frame UV-optical morphologies. Galaxies at z=2.3 have compact and irregular morphologies with no clearly evident Hubble-sequence candidates. The mean galaxy size grows from z=2.3 to 1 by 40%, and the density of galaxies larger than 3 kpc increases by 7 times. At z=1, the size-luminosity distribution is broadly consistent with that of local galaxies, with passive evolution. However, galaxies at z=2.3 are smaller than the large present-day galaxies, and must continue to grow in size and stellar mass. We have measured the galaxies' UV-optical ICD, which quantifies differences in morphology and the relative amount of on-going star-formation. The mean and scatter in galaxies' total colors and ICD increase from z=2.3 to 1. At z=1 many galaxies with large ICD are spirals, with a few irregular systems. Few z=2.3 galaxies have high ICD, and those that do are actively merging. We interpret this as evidence for the presence of older and more diverse stellar populations at z=1 that are not generally present at z>2. We conclude that the star-formation histories of galaxies at z>2 are dominated by discrete, recurrent bursts, which quickly homogenize the galaxies' stellar content, and are possibly associated with mergers. The increase in the stellar-population diversification by z<1.4 implies that merger-induced starbursts occur less frequently than at higher redshifts, and more quiescent star-forming modes dominate. This transition coincides with the emergence of Hubble-sequence galaxies. [Abridged]Comment: Accepted for publication in the Astrophysical Journal. 20 pages, in emulateapj forma

    Deep Observations of Lyman Break Galaxies

    Get PDF
    We summarise the main results of recent work on the Lyman break galaxy population which takes advantage of newly commissioned instrumentation on the VLT and Keck telescopes to push the detection of these objects to new wavelengths and more sensitive limits. We focus in particular on near-infrared observations targeted at detecting emission lines of [O II], [O III], and H-beta and on the first tentative detection of Lyman continuum emission from star forming galaxies at z = 3.Comment: 9 pages, LaTeX, 6 Postscript Figures. To appear in the Proceedings of the ESO Symposium: Deep Fields, ed. S. Cristiani (Berlin: Springer
    corecore