37 research outputs found

    UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster

    Get PDF
    Larvae of Drosophila melanogaster reared at 23\ub0C and switched to 14\ub0C for 1 h are 0.5\ub0C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15\ub0C but not 23\ub0C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein

    Action-based attention in Drosophila melanogaster

    No full text
    The mechanism of action selection is a widely shared fundamental process required by animals to interact with the environment and adapt to it. A key step in this process is the filtering of the "distracting" sensory inputs that may disturb action selection. Because it has been suggested that, in principle, action selection may also be processed by shared circuits in vertebrate and invertebrates, we wondered whether invertebrates show the ability to filter out "distracting" stimuli during a goal-directed action, as seen in vertebrates. In this experiment, action selection was studied in wild-type Drosophila melanogaster by investigating their reaction to the abrupt appearance of a visual distractor during an ongoing locomotor action directed to a visual target. We found that when the distractor was present. flies tended to shift the original trajectory toward it, thus acknowledging its presence, but they did not fully commit to it, suggesting that an inhibition process took place to continue the unfolding of the planned goal-directed action. To some extent flies appeared to take into account and represent motorically the distractor, but they did not engage in a complete change of their initial motor program in favor of the distractor. These results provide interesting insights into the selection-for-action mechanism, in a context requiring action-centered attention, that might have appeared rather early in the course of evolution.NEW & NOTEWORTHY Action selection and maintenance of a goal-directed action require animals to ignore irrelevant "distracting" stimuli that might elicit alternative motor programs. In this study we observed, in Drosophila melanogaster, a top-down mechanism inhibiting the response toward salient stimuli, to accomplish a goal-directed action. These data highlight, for the first time in an invertebrate organism, that the action-based attention shown by higher organisms, such as humans and nonhuman primates, might have an ancestral origin

    Photic entrainment of the circadian clock: from Drosophila to mammals

    No full text
    Entrainment is as fundamental to an organism's circadian timing as are the molecular mechanisms involved in the functioning of the intracellular clock oscillator. In nature, one of the principle, although not the only, circadian entraining stimulus (Zeitgeber) is provided by the daily light--dark cycles. In animals, the visual processing apparatus alone is inadequate to accomplish the task of transducing circadian photic signals to the clockwork machinery. In fact, it is ever more appreciated by circadian biologists that organisms as divergent as plants and mammals have evolved a wonderfully complex array of partly redundant specializations which can guarantee the precise alignment of biological and environmental time. Research in circadian biology is cruising at such a rate that attempts to review the state of the art can only hope, at best, to provide a snapshot of the speeding cruiser from its wake. This paper will hopefully provide a reasonably sharp portrayal of what is at hand

    From action potential to contraction: Neural control and excitation-contractioncoupling in larval muscles of Drosophila.

    No full text
    The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies

    Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY

    No full text
    BACKGROUND: The biological clock synchronizes the organism with the environment, responding to changes in light and temperature. Drosophila CRYPTOCHROME (CRY), a putative circadian photoreceptor, has previously been reported to interact with the clock protein TIMELESS (TIM) in a light-dependent manner. Although TIM dimerizes with PERIOD (PER), no association between CRY and PER has previously been revealed, and aspects of the light dependence of the TIM/CRY interaction are still unclear. RESULTS: Behavioral analysis of double mutants of per and cry suggested a genetic interaction between the two loci. To investigate whether this was reflected in a physical interaction, we employed a yeast-two-hybrid system that revealed a dimerization between PER and CRY. This was further supported by a coimmunoprecipitation assay in tissue culture cells. We also show that the light-dependent nuclear interactions of PER and TIM with CRY require the C terminus of CRY and may involve a trans-acting repressor. CONCLUSIONS: This study shows that, as in mammals, Drosophila CRY interacts with PER, and, as in plants, the C terminus of CRY is involved in mediating light responses. A model for the light dependence of CRY is discussed

    aubergine gene overexpression in somatic tissues of auberginesting mutants interferes with the RNAi pathway of a yellow hairpin dsRNA in Drosophila melanogaster

    No full text
    AUBERGINE (AUB) is a member of the PPD family of proteins. These proteins are implicated in RNA interference. In this article we demonstrate that the expression of the aub gene and protein increase in aub(sting) mutants. We used a genetic method to test whether aub(sting) overexpression could interfere with proper functioning of the process of RNA interference in somatic tissues of Drosophila melanogaster. This method is based on a transgenic line bearing a construct in which a fragment of the yellow (y) gene is cloned to form an inverted repeat (y-IR) under the control of the upstream activation sequence (UAS) of the yeast transcriptional activator GAL4. The UAS-y-IR transgene and the Act5C-GAL4 driver were brought together on chromosome 3 via recombination. In the resulting strain (Act5C-y-IR), transcriptional activation by GAL4 constitutively produces a dsRNA hairpin bearing cognate sequences to the yellow gene causing continuing degradation of y mRNA resulting in yellow(1) (y(1)) phenocopies. In this genetic background, the mutation of any factor involved in RNAi should repress degradation of y mRNA, restoring the wild-type phenotype. We employed this genetic approach to show that an increased amount of AUBERGINE interferes with the regular functioning of the somatic RNAi pathway
    corecore