7 research outputs found

    Naringin supplementation during pregnancy induces sex and region-specific alterations in the offspring’s brain redox status

    Get PDF
    Research has shown the beneficial effects of naringin supplementation to adult rodents, which can ameliorate oxidative stress in disease models. However, evidence has demonstrated that polyphenol supplementation induced detrimental effects when consumed during sensitive periods of development, such as pregnancy. Therefore, we investigated the effect of maternal naringin supplementation during pregnancy on the offspring’s cerebral redox status. Pregnant Wistar rats were divided into control and naringin groups and supplemented from gestational day 15 to gestational day 21. On postnatal days 1, 7, and 21, offspring were euthanized, and the prefrontal cortex, hippocampus, striatum, and cerebellum dissected. On postnatal day 1, maternal naringin supplementation positively modulated the pups’ brain redox status. On postnatal day 7, a pro-oxidative milieu was observed in the offspring’s striatum and cerebellum in a sex-dependent manner, even though the prefrontal cortex and hippocampus were not negatively affected. Besides, the alterations observed on postnatal day 7 did not persist up to weaning. Our findings demonstrated that the effect induced by naringin supplementation in the brain redox status differed according to the period of development in which naringin was consumed since the beneficial effects usually found in the adult rodents became detrimental when the supplementation was applied during pregnancy

    Maternal exercise during pregnancy modulates mitochondrial function and redox status in a sex-dependent way in adult offspring’s skeletal muscle

    No full text
    Maternal exercise has shown beneficial effects on mother and child. Literature confirm progeny’s cognition improvement, and upregulation in neurotrophins, antioxidant network, and DNA repair system. Considering that there is a lack of information demonstrating the impact of maternal exercise on offspring’s skeletal muscle, we aimed to investigate the mitochondrial and redox effects elicited by maternal swimming. Adult female Wistar rats were divided into three groups: control sedentary, free swimming, and swimming with overload (2% of the body weight). Exercised groups were submitted weekly to five swimming sessions (30 min/day), starting 1 week prior to the mating and lasting to the delivery. Gastrocnemius and soleus muscle from 60-day-old offspring were analyzed. Our results clearly showed a sex-dependent effect. Male soleus showed increased mitochondrial functionality in the overload group. Female muscle from the overload group adapted deeply. Considering the redox status, the female offspring delivered to overload exercised dams presented reduced oxidants levels and protein damage, allied to downregulated antioxidant defenses. We also observed an increase in the mitochondrial function in the gastrocnemius muscle of the female offspring born from overload exercised dams. Soleus from female delivered to the overload exercise group presented reduced mitochondrial activity, as well as reduced reactive species, protein carbonyls, and antioxidant network, when compared to the male. In conclusion, maternal exercise altered the redox status and mitochondrial function in the offspring’s skeletal muscle in a sex-dependent way. The clinical implication was not investigated; however, the sexual dimorphism in response to maternal exercise might impact exercise resilience in adulthood

    Naringin Supplementation during Pregnancy Induces Sex and Region-Specific Alterations in the Offspring’s Brain Redox Status

    No full text
    Research has shown the beneficial effects of naringin supplementation to adult rodents, which can ameliorate oxidative stress in disease models. However, evidence has demonstrated that polyphenol supplementation induced detrimental effects when consumed during sensitive periods of development, such as pregnancy. Therefore, we investigated the effect of maternal naringin supplementation during pregnancy on the offspring’s cerebral redox status. Pregnant Wistar rats were divided into control and naringin groups and supplemented from gestational day 15 to gestational day 21. On postnatal days 1, 7, and 21, offspring were euthanized, and the prefrontal cortex, hippocampus, striatum, and cerebellum dissected. On postnatal day 1, maternal naringin supplementation positively modulated the pups’ brain redox status. On postnatal day 7, a pro-oxidative milieu was observed in the offspring’s striatum and cerebellum in a sex-dependent manner, even though the prefrontal cortex and hippocampus were not negatively affected. Besides, the alterations observed on postnatal day 7 did not persist up to weaning. Our findings demonstrated that the effect induced by naringin supplementation in the brain redox status differed according to the period of development in which naringin was consumed since the beneficial effects usually found in the adult rodents became detrimental when the supplementation was applied during pregnancy
    corecore