2 research outputs found

    Recent Advances in the Understanding of the Influence of Electric and Magnetic Fields on Protein Crystal Growth

    No full text
    In this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. This latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. This contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins

    Selective Water Pore Recognition and Transport through Self-Assembled Alkyl-Ureido-Trianglamine Artificial Water Channels

    No full text
    In nature, aquaporins (AQPs) are proteins known for fast water transport through the membrane of living cells. Artificial water channels (AWCs) synthetic counterparts with intrinsic water permeability have been developed with the hope of mimicking the performances and the natural functions of AQPs. Highly selective AWCs are needed, and the design of selectivity filters for water is of tremendous importance. Herein, we report the use of self-assembled trianglamine macrocycles acting as AWCs in lipid bilayer membranes that are able to transport water with steric restriction along biomimetic H-bonding-decorated pores conferring selective binding filters for water. Trianglamine [(±)Δ, (mixture of diastereoisomers) and (R,R)3Δ and (S,S)3Δ], trianglamine hydrochloride (Δ.HCl), and alkyl-ureido trianglamines (n = 4, 6, 8, and 12) [(±)ΔC4, (±)ΔC8, (±)ΔC6, and (±)ΔC12] were synthesized for the studies presented here. The single-crystal X-ray structures confirmed that trianglamines form a tubular superstructure in the solid state. The water translocation is controlled via successive selective H-bonding pores (a diameter of 3 Å) and highly permeable hydrophobic vestibules (a diameter of 5 Å). The self-assembled alkyl-ureido-trianglamines achieve a single-channel permeability of 108 water molecules/second/channel, which is within 1 order of magnitude lower than AQPs with good ability to sterically reject ions and preventing the proton transport. Trianglamines present potential for engineering membranes for water purification and separation technologies
    corecore