22 research outputs found

    The Influence Of Different Distances On Determination Of Critical Velocity In Swimmers [a Influência De Diferentes Distâncias Na Determinação Da Velocidade Crítica Em Nadadores]

    No full text
    The purpose of this study was to determine the influence of different distance combinations on critical velocity (CV) and anaerobic work capacity (AWC). Nineteen swimmers experienced in this training modality participated in the study. CV was calculated by the angular coefficient of the linear regression line between distance and time obtained for each repetition. Five distances (50, 100, 200, 400 and 800 m) performed at an interval of 24 hours were used for the determination of CV, followed by the following four combinations of distances: CV1 (50, 100 and 200 m), CV2 (100, 200 and 400 m), CV3 (200, 400 and 800 m), and CV4 (50, 100, 200, 400 and 800 m). The Shapiro-Wilk test was used to determine the normality of the data. One-way ANOVA was used for comparisons between CV and the different combinations of shots (p<0.05). The combination of smaller distances (CV1) resulted in an increase of CV (1.47 ± 0.13) and a decrease of AWC (11.91 ± 2.61). The use of shots of medium and long distance resulted in a lower CV (1.38 ± 0.10, 1.34 ± 0.09 and 1.36 ± 0.09 for CV2, CV3 and CV4, respectively) and higher AWC (19.84 ± 6.74, 27.44 ± 6.91 and 18.43 ± 5.21) when compared to short shots. The results suggest that shot distance influences CV and AWC, overestimating or underestimating the speed corresponding to maximum lactate steady state.112190194Monod, H., Scherrer, J., The work capacity of a synergic muscular group (1965) Ergonomics, 8 (3), pp. 329-338Hill, D.W., The critical power concept (1993) Sports Medicine, 16 (4), pp. 237-254Moritani, T., Nagata, A., deVries, H., Muro, M., Critical power as a measure of physical work capacity and anaerobic threshold (1981) Ergonomics, 24 (5), pp. 339-350Wakayoshi, K., Ilkuta, K., Yoshida, T., Determination and validity of critical velocity speed as an index of swimming performance in the competitive swimmer (1992) Eur J Appl Physiol Occup Physiol, 64 (2), pp. 153-157Wakayoshi, K., Yoshida, T., Udo, M., Kasai, T., Moritani, T., Mutoh, Y., A simple method for determining critical speed as swimming fatigue threshold in competitive swimming (1992) Int J Sports Med, 13 (5), pp. 367-371Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh, Y., Does critical swimming velocity represent exercise intensity at maximal lactate steady state? (1993) Eur J Appl Physiol Occup Physiol, 66 (1), pp. 90-95Le Chevalier, J.M., Vandewalle, H., Thépaut-Mathieu, C., Stein, J.F., Caplan, L., Local critical power is an index of local endurance (2000) Eur J Appl Physiol, 81 (1-2), pp. 120-127Smith, C.G., Jones, A.M., The relationship between critical velocity, maximal lactate steady-state velocity and lactate turn point velocity in runners (2001) Eur J Appl Physiol, 85 (1-2), pp. 19-26Brickley, G., Doust, J., Williams, C.A., Physiological responses during exercise to exhaustion at critical power (2002) Eur J Appl Physiol, 88 (1-2), pp. 146-151Bull, A.J., Housh, T.J., Johnson, G.O., Perry, S.R., Effect of mathematical modeling on the estimation of critical power (2000) Med Sci Sports Exerc, 32, pp. 526-530Dekerle, J., Baron, B., Dupont, L., Vanvelcenher, J., Pelayo, P., Maximal lactate steady state, respiratory compensation threshold and critical power (2003) Eur J Appl Physiol, 89 (3-4), pp. 281-288Hughson, R.L., Orok, C.J., Stendt, L.E., A high velocity treadmill running test to assess endurance running potential (1984) Int J Sports Med, 5 (1), pp. 23-25Martin, L., Whyte, G.P., Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes (2000) Int J Sports Med, 21 (5), pp. 366-368Denadai, B.S., Greco, C.C., Teixeira, M., Blood lactate response and critical speed in swimmers aged 10-12 years of different standards (2000) J Sports Sci, 18 (10), pp. 779-784Bishop, D., Jenkins, D.G., Howard, A., The critical power function is dependent on the duration of the predictive exercise tests chosen (1998) Int J Sports Med, 19 (1), pp. 125-129Jenkins, D.G., Quigley, B.M., Blood lactate in trained cyclists during cycle ergometry at critical power (1990) Eur J Appl Physiol Occup Physiol, 61 (4), pp. 278-283Housh, D.J., Housh, T.J., Bauge, S.M., A methodological consideration for the determination of critical power and anaerobic work capacity (1990) Res Q Exerc Sport, 61 (4), pp. 406-409Papoti, M., Zagatto, A.M., Mendes, O.C., Gobatto, C.A., Utilização de métodos invasivos e não invasivos na predição das performances aeróbia e anaeróbia em nadadores de nível nacional (2005) Rev Port Cien Desp, 5 (1), pp. 7-14Gaesser, G.A., Poole, D., The slow component of oxygen uptake kinetics in humans (1996) Exer Sport Sci Rev, 24, pp. 35-70Denadai, B.S., Greco, C., Critical speed endurance capacity in Young swimmers: Effects of gender and age (2005) Pediatric Exerc Sci, 17 (4), pp. 353-363Calis, J.F., Denadai, B.S., Influência das cargas selecionadas na determinação da potência crítica determinada no ergômetro de braço em dois modelos lineares (2000) Rev Bras Med Esporte, 6 (1), pp. 1-4Toubekis, A.G., Tsami, A.P., Tokmakidis, S.P., Critical Velocity and lactate threshold in Young swimmers (2006) Int J Sports Med, 27 (2), pp. 117-123Kokubun, E., Velocidade crítica como estimador do limiar anaeróbio na natação (1996) Rev Paul Educ Fis, 10 (1), pp. 5-20Tossaint, H.M., Wakayoshi, K., Hollander, A.P., Ogita, F., Simulated front crawl swimming performance related to critical speed and critical power (1998) Med Sci Sports Exerc, 30 (1), pp. 144-151Jenkins, D., Quigley, B.M., Endurance training enhances critical power (1992) Med Sci Sports Exerc, 24 (11), pp. 1283-1289Jenkins, D.G., Quigley, B.M., The influence of intensity exercise training on the Wlin-Tlin relationship (1993) Med Sci Sports Exerc., 25 (2), pp. 275-282Smith, J.C., Hill, D.W., Stability of parameters estimates from power/time relationship (1993) Can J Appl Physiol., 18 (1), pp. 43-47Miura, A., Sato, H., Whipp, B.J., Fukuba, Y., The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry (2000) Ergonomics, 46 (1), pp. 133-141McHado, M.V., Batista, A.R., Marques, A.C., Baleixo, R., Andries Jr., O., Influência do intervalo sobre a determinação da velocidade crítica em nadadores (2007) Rev Educ Fís, 18 (SUPPL.), pp. 112-115Smith, J.C., Stephens, D.P., Hall, E.L., Jackson, A.W., Earnest, C.P., Effect of oral creatine ingestion on parameters of work-time relationship and time to exhaustion in high-intensity cycling (1998) Eur J Appl Physiol, 77 (4), pp. 360-365Eckerson, J.M., Stout, J.R., Moore, G.A., Stone, N.J., Nishimura, K., Tamura, K., Effect of two and five days of creatine loading on anaerobic working capacity in women (2004) J Strength Cond Res, 18 (1), pp. 168-173Nakamura, F.Y., Gancedo, M.R., Silva, L.A., Lima, J.R., Kokubun, E., Utilização do esforço percebido na determinação da velocidade crítica em corrida aquática (2005) Rev Bras Med Esporte, 11 (1), pp. 1-

    Biosynthesis of peptidoglycan

    No full text
    corecore