99 research outputs found

    Estimating numerical errors due to operator splitting in global atmospheric chemistry models: Transport and chemistry

    Full text link
    We present upper bounds for the numerical errors introduced when using operator splitting methods to integrate transport and non-linear chemistry processes in global chemical transport models (CTM). We show that (a) operator splitting strategies that evaluate the stiff non-linear chemistry operator at the end of the time step are more accurate, and (b) the results of numerical simulations that use different operator splitting strategies differ by at most 10 percent, in a prototype one-dimensional non-linear chemistry-transport model. We find similar upper bounds in operator splitting numerical errors in global CTM simulations

    Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance

    Full text link
    We present a machine learning-based methodology capable of providing real-time ("nowcast") and forecast estimates of influenza activity in the US by leveraging data from multiple data sources including: Google searches, Twitter microblogs, nearly real-time hospital visit records, and data from a participatory surveillance system. Our main contribution consists of combining multiple influenza-like illnesses (ILI) activity estimates, generated independently with each data source, into a single prediction of ILI utilizing machine learning ensemble approaches. Our methodology exploits the information in each data source and produces accurate weekly ILI predictions for up to four weeks ahead of the release of CDC's ILI reports. We evaluate the predictive ability of our ensemble approach during the 2013-2014 (retrospective) and 2014-2015 (live) flu seasons for each of the four weekly time horizons. Our ensemble approach demonstrates several advantages: (1) our ensemble method's predictions outperform every prediction using each data source independently, (2) our methodology can produce predictions one week ahead of GFT's real-time estimates with comparable accuracy, and (3) our two and three week forecast estimates have comparable accuracy to real-time predictions using an autoregressive model. Moreover, our results show that considerable insight is gained from incorporating disparate data streams, in the form of social media and crowd sourced data, into influenza predictions in all time horizon

    Gradient-based estimation of Manning's friction coefficient from noisy data

    Get PDF
    We study the numerical recovery of Manning's roughness coefficient for the diffusive wave approximation of the shallow water equation. We describe a conjugate gradient method for the numerical inversion. Numerical results for one-dimensional model are presented to illustrate the feasibility of the approach. Also we provide a proof of the differentiability of the weak form with respect to the coefficient as well as the continuity and boundedness of the linearized operator under reasonable assumptions using the maximal parabolic regularity theory.Comment: 19 pages, 3 figure

    Evaluating the Performance of Infectious Disease Forecasts: A Comparison of Climate-Driven and Seasonal Dengue Forecasts for Mexico

    Get PDF
    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model
    • …
    corecore