1,562 research outputs found

    Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study

    Full text link
    Abstract Background Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP. Findings In this study, we examined the regional μ-opioid receptor (μOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients. Conclusions Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.http://deepblue.lib.umich.edu/bitstream/2027.42/112555/1/12990_2012_Article_533.pd

    Photosynthetic Characteristics of the C 3

    Full text link

    Elevated Electron Temperatures in the Auroral E Layer Measured With the Chatanika Radar

    Get PDF
    An extensive series of spectral measurements has been made in the auroral E region with the Chatanika incoherent scatter radar. Becasue of the small scale length for variations of electron density, temperatures, and ion-neutral collisions we used the operating mode with the best possible range resolution—9 km. About 5% of the time the data exhibited an unusual spectral shape that was most pronounced at 105 and 110 km. Instead of being almost Gaussian with only a small hint of two peaks, the spectra are much wider, with two well-developed peaks. After carefully considering the validity of the measurements and their interpretation, we conclude that the unusual spectra are due to greatly enhanced electron temperatures. At 110 km, the electron temperature may increase from 250 K to 800 K, while the ion temperature remains near 250 K. This enhancement of the electron temperature extends from 99 km to at least 116 km. We show that the temperature increase is too large to be accounted for by auroral particle precipitation, though it coincides in time with ion temperature enhancements at altitudes above 125 km. Because these latter enhancements are believed to be due to joule heating, we deduce that electric fields of 24-40 mV/m are present and that the electrons are moving through the ions and neutrals at speeds of 500-800 m/s. Despite these velocities, we find that joule heating of the electrons also cannot account for the elevated electron temperatures. Several consequences of the elevated electron temperatures are discussed. One is that the rate constants for molecular recombination are reduced. Another is that during periods of significant joule heating, the deduced electron density profile, when fully corrected for temperatures, has a significantly lower peak altitude and greater density than that deduced under the usual assumption of equal electron and ion temperatures. Since conductivities, currents, ionization rates, and differential energy spectra are dependent upon the density profile, care must be taken to account properly for the temperature effects when deriving these quantities

    The Public Health Exposome: A Population-Based, Exposure Science Approach to Health Disparities Research

    Get PDF
    The lack of progress in reducing health disparities suggests that new approaches are needed if we are to achieve meaningful, equitable, and lasting reductions. Current scientific paradigms do not adequately capture the complexity of the relationships between environment, personal health and population level disparities. The public health exposome is presented as a universal exposure tracking framework for integrating complex relationships between exogenous and endogenous exposures across the lifespan from conception to death. It uses a social-ecological framework that builds on the exposome paradigm for conceptualizing how exogenous exposures “get under the skin”. The public health exposome approach has led our team to develop a taxonomy and bioinformatics infrastructure to integrate health outcomes data with thousands of sources of exogenous exposure, organized in four broad domains: natural, built, social, and policy environments. With the input of a transdisciplinary team, we have borrowed and applied the methods, tools and terms from various disciplines to measure the effects of environmental exposures on personal and population health outcomes and disparities, many of which may not manifest until many years later. As is customary with a paradigm shift, this approach has far reaching implications for research methods and design, analytics, community engagement strategies, and research training

    Architecture for the photonic integration of an optical atomic clock

    Get PDF
    Laboratory optical atomic clocks achieve remarkable accuracy (now counted to 18 digits or more), opening possibilities to explore fundamental physics and enable new measurements. However, their size and use of bulk components prevent them from being more widely adopted in applications that require precision timing. By leveraging silicon-chip photonics for integration and to reduce component size and complexity, we demonstrate a compact optical-clock architecture. Here a semiconductor laser is stabilized to an optical transition in a microfabricated rubidium vapor cell, and a pair of interlocked Kerr-microresonator frequency combs provide fully coherent optical division of the clock laser to generate an electronic 22 GHz clock signal with a fractional frequency instability of one part in 10^(13). These results demonstrate key concepts of how to use silicon-chip devices in future portable and ultraprecise optical clocks

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    An Uncertain Dominion: Irish Psychiatry, Methadone, and the Treatment of Opiate Abuse

    Get PDF
    This paper investigates some productive ambiguities around the medical administration of methadone in the Republic of Ireland. The tensions surrounding methadone maintenance therapy (MMT) are outlined, as well as the sociohistorical context in which a serious heroin addiction problem in Ireland developed. Irish psychiatry intervened in this situation, during a time of institutional change, debates concerning the nature of addiction, moral panics concerning heroin addiction in Irish society and the recent boom in the Irish economy, known popularly as the Celtic Tiger. A particular history of this sort illuminates how technologies like MMT become cosmopolitan, settling into, while changing, local contexts

    Genome-wide association study reveals novel genetic loci:a new polygenic risk score for mitral valve prolapse

    Get PDF
    AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-beta signalling molecules and spectrin beta. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention. KEY QUESTION: Expand our understanding of the genetic basis for mitral valve prolapse (MVP). Uncover relevant pathways and target genes for MVP pathophysiology. Leverage genetic data for MVP risk prediction. KEY FINDING: Sixteen genetic loci were significantly associated with MVP, including 13 novel loci. Interesting target genes at these loci included LTBP2, TGFB2, ALKP3, BAG3, RBM20, and SPTBN1. A risk score including clinical factors and a polygenic risk score, performed best at predicting MVP, with an area under the receiver operating characteristics curve of 0.677. TAKE-HOME MESSAGE: Mitral valve prolapse has a polygenic basis: many genetic variants cumulatively influence pre-disposition for disease. Disease risk may be modulated via changes to transforming growth factor-beta signalling, the cytoskeleton, as well as cardiomyopathy pathways. Polygenic risk scores could enhance the MVP risk prediction
    corecore