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Abstract: The lack of progress in reducing health disparities suggests that new approaches 

are needed if we are to achieve meaningful, equitable, and lasting reductions. Current scientific 

paradigms do not adequately capture the complexity of the relationships between environment, 

personal health and population level disparities. The public health exposome is presented 

as a universal exposure tracking framework for integrating complex relationships between  

exogenous and endogenous exposures across the lifespan from conception to death. It uses 

a social-ecological framework that builds on the exposome paradigm for conceptualizing 

how exogenous exposures “get under the skin”. The public health exposome approach has 

led our team to develop a taxonomy and bioinformatics infrastructure to integrate health 

outcomes data with thousands of sources of exogenous exposure, organized in four broad 

domains: natural, built, social, and policy environments. With the input of a transdisciplinary 

team, we have borrowed and applied the methods, tools and terms from various disciplines 

to measure the effects of environmental exposures on personal and population health outcomes 

and disparities, many of which may not manifest until many years later. As is customary 

with a paradigm shift, this approach has far reaching implications for research methods and 

design, analytics, community engagement strategies, and research training. 

Keywords: exposome; public health; health disparities; trans-disciplinary; exposure science;  

social-ecological; combinatorial analysis; CBPR; geographical information systems; PPGIS 

 

1. Introduction 

Since the release of the Secretary’s Task Force Report on Black and Minority Health [1] the health 

disparities burden borne by racial/ethnic and other underserved populations has shown little improvement. 

Since 2003, Blacks have shown no significant change in disparities compared to Whites on 60 of the 

73 measures of health care quality and access tracked and measured by the Agency for Healthcare  

Research and Quality [2], while for two, disparities actually increased (breast cancer diagnosed at  

advanced stages among women 40 and over, and maternal deaths per 1000 live births). It has become 

increasingly evident that without a radical new approach in efforts to comprehend the underlying  

causes of health disparities, our efforts to eliminate them are unlikely to succeed [3]. 

The causes of health disparities are varied, complex, and not yet well understood [4–10].  

Only 10% to 30% of the variance in cancer and chronic disease outcomes, for instance, has been 

attributed to genetic factors while the remaining 70%–90% has been attributed to the environment [11,12]. 
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There is increasing evidence that social and ecological factors must be addressed together to eliminate 

health disparities [13–16]. 

Exposure science has evolved over the past thirty years as a distinct field, drawing from many  

disciplines to shed light on the effects that environmental exposures have on acute and chronic health 

conditions [17–21]. Exposure science is the study of stressors, receptors, and their sources of  

human contact within the environmental context of space (geographic location, e.g., latitude/longitude  

coordinates), place (attributes assigned to the location, e.g., home, work, park), and time [22–27].  

The goal of exposure science is to identify and understand fundamental, shared mechanisms and  

common biological pathways (e.g., inflammation, methylation, oxidative stress, and other epigenetic 

changes) underlying a broad range of complex diseases. This has direct implications for the  

development of targeted personal and community health interventions [28–32].  

The need for an exposure science paradigm shift was identified in the recent U.S. National  

Research Council publication: “Exposure Science in the 21st Century: A Vision and a Strategy” [17]. 

This report argued in favor of a broader approach to exposure science. In addition to a focus on  

human health, the report also recommended collecting exposure data that characterizes the ecosystem, 

recognizing that a healthy ecosystem is among the prerequisites for human health. It also suggested 

that adoption and validation of an exposomics context “should lead to the development of a universal  

exposure-tracking framework that allows for the creation of an exposure narrative, the prediction of 

biologically relevant human and ecologic exposures, and the generation of improved exposure  

response.” The lack of this “exposure narrative” significantly hampers community level exposure  

investigations, especially those associated with technological disasters such as the Gulf Oil Spill  

in 2010 [33].  

Increasingly, investigators have adapted exposure science and social-ecological models to glean  

insights into the underlying causal mechanisms through which environmental exposures affect  

personal health which may lead to population level disparities [9,13,20,34–38]. Yet, traditional  

exposure science models typically have attempted to examine the impact of the environment on  

disease through a reductionist approach, supported by discipline-driven, theories that have led to  

narrowly focused assessments, models, and analytics [11,17].  

The exposome has been proposed as an emergent exposure science paradigm for conceptualizing 

the cumulative effects of environmental exposures across the lifecycle (from conception to death)  

and for examining the dynamic, multi-dimensional inter-relationships between environment and  

health [3,20,21,23–25]. In 2005, Wild [22] first described the exposome—the totality of one’s  

lifetime exposures—as a conceptual framework for understanding the environmental context of health  

outcomes. He differentiated between the “eco-exposome” as the point of contact between an external  

environmental stressor and biological receptor of an individual and the “endo-exposome” as the  

inward effects arising from exposure on those receptors. A related term, the envirome, was initially used 

to describe triggers affecting psychiatric illness [39]. Increasingly, in the context of environmental health 

the envirome represents the constellation of psychosocial factors that influence health. The term  

has also been used to describe the effect of the environment on genotype, resulting in phenotypic  

variability [40]. To date, source-exposure-disease relationships have been addressed primarily at an 

endogenous level, with a focus on the effects of exposure inward on human, internal chemical  

environment [29]. Characterization of the “eco-exposome” has been far more challenging [22].  
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In 2011, we received a supplemental award from the Environmental Protection Agency to our P20, 

NIMHD Health Disparities Research Center of Excellence at Meharry Medical College to  

establish an Environmental Health Core (Grant Number 3P20MD000516-07S1). The aims of this grant 

were to: (1) establish a core that supports analysis of the complex interactions between health  

outcomes, disparities and the environment; (2) promote the use of trans-disciplinary models and  

analyses to increase knowledge about the complex relationships between health disparities and the  

environment, and (3) use public participatory geographic information systems (PPGIS) to engage  

community stakeholders in the use of spatial data and interactive mapping to reduce health  

disparities. To achieve these aims, the Center engaged a transdisciplinary group of investigators  

representing a broad array of disciplines and skills, including: (1) the physical, built, social and  

policy environments; (2) health disparities content areas; (3) a range of statistical models and  

analytic techniques including multi-level analysis, predictive modeling, spatial analysis, and graph  

theory/combinatorial analysis to analyze the complex relationships between health disparities and  

environmental factors; (4) bioinformatics, and (5) decision support tools for engaging community  

members in the research process, including data collection. This new approach has implications not  

only for how we conceptualize health disparities and conduct health disparities research, but also for 

strategies to improve health outcomes and eliminate disparities in vulnerable subpopulations.  

A glossary of trans-disciplinary terms is presented in Appendix 1. 

The objectives of this manuscript are to:  

(1) present the public health exposome as an integrated model for examining exogenous and 

endogenous source-exposure-disease relationships across the life cycle and the influence of 

those relationships on health disparities at a population level;  

(2) describe the public health exposome database, a 30-year, longitudinal repository that integrates 

health and environmental databases;  

(3) provide an overview of the transdisciplinary methods and analytics we have developed to help 

unravel the complex interactions between environmental stressors and bio-psycho-social systems at 

the individual, community, and social-ecological systems levels, as those relate to personal 

health and population level disparities; 

(4) discuss the use of emergent sources of exposure data and the interface with bioinformatics and 

community engagement; and  

(5) examine the implications of the public health exposome paradigm for future health  

disparities research. 

2. Public Health Exposome  

2.1. Concepts  

A public health exposome paradigm is grounded in systems theory [41] and a life cycle approach [42].  

It provides a conceptual framework which can be used to identify and compare relationships between 

differential levels of exposure at critical life stages, personal health outcomes, and health disparities at 

a population level across space, place, and time. It allows for the generation and testing of hypotheses 

about the pathways through which exogenous and endogenous exposures result in poor personal health 



Int. J. Environ. Res. Public Health 2014, 11 12870 

 

 

outcomes and population level health disparities and enables the identification of at-risk persons and 

health disparities communities and the targeting of public health interventions.  

In contrast to previous descriptions of the “exposome” which have focused on the effects of  

endogenous exposures, a PHE approach integrates information about endogenous and exogenous  

exposure mechanisms, processes and outcomes with mediating and moderating factors at both the  

individual and population health levels. The below PHE conceptual model (See Figure 1) presents an 

integrative approach that can be used to both generate and test hypotheses about the underlying causal  

mechanisms through which environmental exposures act at critical life stages from the molecular to  

a population health level. This model has guided the development of a bioinformatics infrastructure 

that supports the assessment of exposure characteristics on personal health outcomes across the  

lifespan and challenges us to reexamine our understanding of the relationship between personal health 

and population level, health disparities.  

Figure 1. Public health exposome conceptual model. 

 

2.2. Data Sources 

An exposure science approach has guided the development of the PHE conceptual model,  

data repository, and bioinformatics infrastructure by this transdisciplinary team of inter-institutional  

investigators which convened over the past three years through weekly teleconferences and quarterly  

in-person meetings. This PHE conceptual model has guided formative research efforts for  

conceptualizing pathways and generating hypotheses through which environmental exposures lead to 

population level health disparities and the establishment of a data repository for analyzing the direct 

and indirect effects of environmental exposures across space, over time, and across the life span [34].  
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The PHE data repository includes data captured at various spatial and temporal units. It currently 

stores over 12,000 variables that have been geocoded and are being harmonized at an annual and  

county level in a relational database. Most of the health and environmental data in the PHE data  

repository were obtained from publicly available sites at no or low costs; many were downloaded  

directly from the web. However, some restricted data also are included in the data base. Approval was 

received from the Meharry Medical College IRB to cover handling and access to restricted data to  

ensure confidentiality. A comprehensive list of data sources of the data we have collected in the public 

health exposome repository is provided in Appendix 2.  

The goal of the PHE repository was to collect annual, health and environmental exposure data,  

for 3141 counties and county equivalents, over 30 years (1980–2010). While we recognize the  

importance of using more granular levels of spatial and temporal data, such as block groups or  

neighborhoods, apart from data provided by the U.S. Census, these data are rarely publically available.  

The data repository currently includes both raster (e.g., area level) including remotely sensed  

meteorologic data [43–46] and vector (point) data and various shape files (e.g., census tracts,  

zip codes, metropolitan statistical areas (MSAs), etc.). The database also includes crosswalks which 

allow us to convert spatial units to other units. Crosswalks allow for data obtained in smaller  

geographic units such as census tracts, grid cells, or zip codes to be aggregated up to the county level. 

Health and some exposure data, however, often are only available at larger spatial units (such as 

(MSAs), hospital referral regions (HRRs), and hospital service areas (HSAs) and as such, typically are 

more challenging to convert to counties or county equivalents. We are exploring the use of  

visualization, imputations, and synthetic estimates to apply attributes of the population from a larger 

unit to that of a smaller unit and other methodical approaches for characterizing uncertainty due to  

exposure misclassification, multiple sources of data, and different spatial scales [47,48]. 

A taxonomy for distinguishing and measuring the effects of different types of health and  

exogenous exposures included in the database was developed. Health data were organized around six 

broad areas of disparities (cancer, cardio-metabolic disease, HIV/STIs, intentional/unintentional  

injury, maternal and child health, and mental health and substance abuse) [1], and include measures of 

mortality, morbidity, screening and behaviors. Environmental data are organized in four broad  

domains: natural, built, social and policy environments. The natural environment includes exposure 

measures of air, climate, water, and land; the built environment includes attributes of places we live, 

work, play, learn and pray, with measures of both quality, quantity, and access; the social  

environment includes descriptors of social/economic conditions such as poverty, crime, racial  

segregation, and unemployment found in an area or population; while the policy environment  

includes data about governmental laws, ordinances and regulations that have either a direct or indirect 

impact on health.  

Data were originally collected and stored in ArcView 10.2, geographic information system (GIS) 

and later reprocessed as a relational database in Microsoft SQL Server to support data queries and the  

exporting of data to statistical software packages, including SPSS, SAS, R and STATA, and for use by 

computational biology colleagues to perform high throughput and combinatorial analysis. Having data 

in a relational database allows for easier data queries in a format that does not require knowledge of a 

GIS software program. A comprehensive data dictionary with metadata for all data elements has been 

created in MS Access. We expect that the PHE database will continue to grow as more data become 
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available over time and to be continually refined as spatial-temporal and computational modeling and 

analytic tools are developed. 

3. Analytic Approaches 

A PHE approach supports the application of both parametric and non-parametric methods and  

statistical analyses, including those that are both data and hypothesis driven and is not limited to  

underlying assumptions of independence or normal distribution. The PHE data infrastructure  

supports the handling of “Big Data”, non-parametric probability distributions, and spatial and  

temporal auto-correlation and can be used by a broad array of research approaches and analytics,  

including Bayesian models, predictive modeling, computational spatial analysis, and graph  

theory/combinatorial analysis and simulation—analytic tools used more commonly in other disciplines, 

such as mathematics, GIS, engineering, and computational biology. Three approaches that take  

advantage of the relational structure of the database show great promise for future use with the  

public health exposome include multi-level, spatial, and computational and combinatorial models  

and analytics. A comparison of the three approaches is presented in Appendix 3 (Table A1). 

3.1. Multi-Level Analysis 

A multi-level approach that explicitly recognizes the embedded nature of health outcomes within its 

biological, social, ecological, and community contexts is likely to provide a better understanding of  

disease across the life course and to explain heterogeneities in health disparities across socioeconomic 

and geographic boundaries that, to date, remain largely unexplained. [49,50]. This approach underscores 

the need to measure health disparities within a social-ecological context as opposed to examining 

health disparities without any reference to environmental characteristics [51,52]. 

Multi-level analyses are particularly suitable for analyzing contextual data, because they take  

into account the hierarchical structure and the nested nature (spatial and temporal) of the database,  

allowing for the simultaneous examination of individual and group-level factors. Other advantages of 

multi-level analysis include being able to differentiate “independent” effects, assess the  

reciprocal relationships between factors at different levels, and estimate how much complex  

between-group variability is explained by contextual factors [37,52].  

For example, variations in asthma occur within a social and ecological context that can benefit from 

employing an explicit multi-level analytical strategy (see Figure 2). Such an approach allows the  

investigator to: (1) quantify the extent to which asthma is clustered by neighborhood and  

community grouping; (2) quantify both the extent to which neighborhood variations in asthma are due 

to the clustering of risk factors and the extent to which the effect of individual risk factors vary from 

neighborhood to neighborhood; and (3) quantify the relative importance of individual, neighborhood 

and societal level exposures in predicting individual asthma. These three constitutive components of a  

multi-level analytic framework have important implications for asthma as well as other areas of  

disparities research.  
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3.2. Spatial-Temporal Analysis 

GIS and spatial-temporal analysis also offer useful tools that can be used both for data  

visualization of spatial and temporal patterns [53,54] and for analysis of spatially and temporally  

continuous data. Mapping can be used to visualize geographic patterns and temporal trends at a county 

level, generate hypotheses, and identify “hot spots” to guide further data collection efforts and the  

targeting of public health interventions. In addition to generating traditional static maps (e.g., rates per 

100,000), GIS supports data visualization tools for modeling spatial and temporal relationships.  

Spatial analysis provides the tools to examine the relationships between socioeconomic riskscapes,  

environmental health hazard sources, socially vulnerable neighborhoods, and health disparities,  

including hotspot analysis and cluster and outlier analysis to display changes in patterns over time.  

Spatial statistical methods such as kernel density estimation, trend surface analysis, seasonal time  

series trend decomposition, and spatial autocorrelation are geo-statistics that can be used for analyzing  

the spatial and temporal relationships that exist among diseases, environments, population  

characteristics and health disparities within or between defined populations and geographic areas. 

Figure 2. A multi-level ecological approach to explain heterogeneities in asthma  

expression across socioeconomic and geographic boundaries. 

 

In recent years, there have been increasing efforts to use GIS and mapping to visualize spatial and 

temporal aspects of public and environmental health issues. The PHE approach differs in a number of 

important ways from other public health data sharing and visualization portals that have been  

developed, such as those supported by the Center for Disease Control and Prevention’s National  

Environmental Public Health Tracking Network (http://ephtracking.cdc.gov/showHome.action) [55], 

the Environmental Protection Agency’s EJView (http://epamap14.epa.gov/ejmap/entry.html) [56], 

Community Commons (http://www.communitycommons.org/maps-data/) [57], Opportunity Nation 
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(http://opportunityindex.org) [58], and the Healthy Communities Institute (http://www.healthy 

communitiesinstitute.com/) [59]. First, the PHE approach provides a comprehensive and integrative  

theoretical framework for identifying environmental exposures and for conceptualizing the mechanisms 

through which exposures affect biological processes, personal health outcomes, and lead to population 

level disparities. An underlying theoretical model is generally lacking in these other approaches.  

Second, the PHE is not limited by traditional disciplinary boundaries in conceptualizing exposures  

(e.g., public health, environmental health, social determinants, or public policy) which underlie these 

other efforts. Third, the PHE is more than a mapping tool; it is fundamentally a research tool. While we 

recognize the importance of visualization and community mapping—especially as web tools—online 

efforts are limited by their ability to display multiple types of vector and raster data simultaneously;  

it quickly overwhelms. Fourth, detecting patterns from maps often is a matter of spatial and temporal 

scale which may be extremely difficult to capture on a web portal. Lastly, the PHE repository supports 

multiple types of tools and analytics which can be used to address limitations that arise from using 

geo-spatial data, including spatial autocorrelation and spatial uncertainty. 

3.3. Combinatorial Analysis 

“Big Data” analytics is the process of examining large amounts of data to detect hidden patterns,  

unknown correlations and other useful information. In this paper, we use the term “Big Data” to  

refer to the use of data driven approaches, such as graph theory and combinatorial analysis, rather than 

referring to the sheer size of the data [60].  

The application of “Big Data” analytics and tools to the public health exposome data can be used to 

help explain heterogeneities in health disparities across socioeconomic and geographic boundaries that 

to date, have remained largely unexplained. Combinatorial analysis employs high performance parallel 

implementations using the power of mathematical abstraction to compile correlations in “Big Data” 

sets into statistically robust inter-related clusters. By extracting and highlighting variable sets common 

to multiple relationships (cliques and other dense sub-graphs), these tools can be used to determine  

inflection points and other patterns of possible interest, and to perform analysis using the latest  

mathematical tools, innovative graph algorithms, and powerful computational platforms to uncover  

latent but meaningful relationships on an immense scale [60]. Methods for querying and mining  

“Big Data” are fundamentally different from traditional statistical analysis on smaller samples.  

“Big Data” often is more valuable than small samples because general statistics obtained from frequent 

patterns and correlation analysis usually overpower individual fluctuations and can disclose more  

reliable hidden patterns and knowledge. Further, interconnected “Big Data” forms large heterogeneous 

information networks with which information redundancy can be explored to compensate for  

missing data, crosscheck conflicting cases, validate trustworthy relationships, disclose inherent clusters,  

and uncover hidden relationships and models. Most clustering approaches are limited by the fact that 

the clusters produced are disjointed, requiring that a variable be assigned to a single cluster.  

This greatly simplifies the analysis. One challenge is to define these filters in such a way that they  

do not discard useful information.  

By employing high performance parallel implementations and the power of mathematical abstraction 

we have been able to extract and highlight variable sets common to multiple relationships and to  
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determine inflection points and other patterns of possible interest. High throughput analysis (HTA)  

uses the latest mathematical tools, innovative graph algorithms, and powerful computational  

platforms to uncover latent but meaningful relationships on an immense scale, providing research  

opportunities to data mine at multiple levels of granularity. We have used HTA (combinatorics and 

graph theory) to compile weak correlations using a subset of 600 variables from more than 12,000 

PHE variables into statistically robust inter-related clusters and to identify relevance networks, beginning 

with a symmetric correlation matrix [60].  

3.4. Multi-Modal Analytic Approach 

We have found it advantageous to apply multiple types of analytics to address the complex relationships 

between environmental exposures and health disparities. For example, while many individual risk  

factors associated with poor pregnancy-related outcomes are known, limited progress has been made to 

date regarding the complex spatial-temporal nature of the relationships between pregnancy related  

morbidities and mortalities, environmental exposures and population level disparities. The below  

example illustrates the use of a multi-model analytic approach to examine these complex relationships 

across states combining the use of GIS and spatial analysis, graph theoretical analysis, combinatorial 

analysis, and traditional statistical analytics.  

We used a PHE approach to examine the social-ecological context of premature birth [61].  

GIS was used to map the rates of premature birth at a county level for the 50 states. A county-level  

database was created to integrate health outcomes and environmental exposure data from each of the 

four PHE domains (natural, built, social and policy environments). Graph theoretical algorithms,  

combinatorial analytics and traditional statistical methods then were used to uncover putative  

inter-linking associations of PHE exposure variables (natural, built, social and policy environments) 

with premature birth rates. For a more detailed discussion of these methods, see Langston, et al. [60].  

Using county-level data from the PHE database, we first constructed a complete, finite, simple,  

undirected and edge-weighted graph, where each node represented a variable, and each edge was 

weighted by the correlation coefficient of its endpoints. Paracliques/factors were derived from  

600 exposure variables using combinatorial analysis. Spatially adjusted regression analysis, with and  

without spatial autocorrelation, was then used to model pregnancy related outcomes. This approach  

allowed inclusion of a large number of different and highly divergent population level variables,  

reducing the number of variables under review through graph theoretical techniques, which permitted 

us to apply traditional and otherwise unscalable statistical analysis techniques. Resulting models  

explained a substantial proportion of pregnancy related health outcomes supporting the value of the 

PHE approach in studying health disparities [61]. 

4. Implications  

The PHE paradigm provides opportunities to strengthen the evidence base for health disparities  

research, practice, policy, community engagement, and research training in unique, transdisciplinary, 

and interdependent ways, supporting research advances in the following areas: individual exposure  

characterization; community-level, environmental, epidemiologic cohort studies; health disparities  

research; community-based participatory research (CBPR) methods; research at the intersection of the 
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eco-system and human health; and training a new cadre of emerging transdisciplinary scholars.  

Figure 3 presents two research trajectories: research targeting knowledge gain as depicted on the  

X-axis represents a continuum from knowledge acquisition, to validation, transfer and ultimately to 

translation. On the Y-axis, research occurs along the translation continuum from molecular (basic) to 

applied and ultimately to population-level inquiries. A significant amount of research in general,  

and exposure research specifically, has been conducted in the basic sciences to achieve knowledge  

acquisition or validation (left quadrants) of the effects of environmental exposures. A growing, but still 

limited body of work is devoted to addressing health disparities at the population level and translation 

beyond the traditional clinical settings (right quadrants).  

Figure 3. Application of the public health exposome in environmental health research. 

 

4.1. Research Implications  

For environmental health research, population level studies (right upper quadrant of Figure 3)  

traditionally have been hampered by limitations (small denominator, incomplete exposure characterization) 

that potentially now can be addressed by a PHE approach. Specifically, the vast database harnessed by 

the PHE can allow for enhanced risk assessments using reasonably acceptable surrogates, as well as 

facilitate health outcome analyses using a robust denominator. In turn, the possibility of doing both 

types of assessments informs the design of tailored environmental epidemiologic studies, increasing 

the likelihood for meaningful results in a resource- effective manner. 

The PHE advances health disparities research in five critical aspects (see Figure 4): (1) Overcomes 

study design limitations. Human health studies favor a randomized controlled trial design, the gold  

standard in providing the most direct evidence of causation. This design is frequently not possible to 

implement because exposures to contaminants have often already occurred and prospectively exposing 

humans is ethically inappropriate. Obtaining a representative study sample and control subjects,  

and confounding social determinants are among the most common limitations of environmental  
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studies. Several of these limitations are now addressed by deploying the PHE paradigm. (2) Leverage 

secondary data: Specifically in the context of environmental health, data not originally collected to  

assess potential exposures to hazardous substances are seldom useful even as baseline measures.  

The PHE database and analytics suite will, at a minimum, enable geospatial documentation of  

contaminant sources to target potential populations at risk for further evaluation taking into account the 

requirement to assess the presence of potentially completed exposure pathways. (3) Strengthen cumulative 

risk models. By taking a life course approach as well as integrating multiple proximal and distal factors 

influencing health disparities, public health research can target primary data collection more  

effectively time- and cost-wise. In addition, the PHE can support the development of predictive  

models, facilitating tailored prevention and intervention efforts in vulnerable communities.  

(4) Advance exposure characterization. Insufficient exposure characterization, especially past  

exposures, and lag time between exposure and study significantly hamper the conduct of environmental  

epidemiologic studies. The PHE framework offers important opportunities to strengthen the  

knowledgebase of exposure science. For example, the framework operationalizes environmental  

exposures in four broad domains: natural, built, social and policy. The PHE enables capture of nested  

complexities of exposures, and provides a model that allows for the integration of exposure data on  

personal, bio-psycho-social- and health conditions taking into account the social-ecological context.  

Traditionally, the epidemiology of health disparities has focused on individual-level risk factors and 

family factors while far less attention has been given to the broader social-ecological context in which 

individuals live, work, learn, play, and pray. A more comprehensive approach that considers the range 

of social and ecological factors that co-vary with lower SES and minority group status (e.g., differential 

environmental exposures, residential segregation, psychological stress, housing quality, and social  

capital, etc.) is needed to tease apart these relationships [62,63]. (5) Incorporates new statistical  

methods and technologies. The PHE platform supports the collection of data in both a GIS and a  

relational database and provides multiple methods of data mapping and visualization and spatial,  

mathematical, and statistical modeling and analyses. These methods enable us to include many more 

variables than are usually included in environmental public health studies and to take advantage of the 

range of data that is now available. 

Figure 4. Public health exposome: advancing health disparities research. 
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4.2. Implications for Public Health Practice 

The notion that the health of the environment is intimately linked to that of humans is receiving  

increased recognition [25]. A PHE paradigm puts us in a better position to address the role that  

historical burdens of exposures have manifested in all four PHE domains. The use of GIS and other 

spatial modeling and simulation tools can help research and community partners better visualize past 

environmental media contamination and prospectively model potential future risk [64]. Visualizing  

environmental contamination in this way demystifies exposure science and makes the limitations  

scientists face more real for community partners. The need to bolster the translation of ecosystem-human 

health research portfolio and tools by putting data into the hands of end users is becoming more urgent 

in the context of both natural and technological disasters such as the Hurricane Katrina, Super Storm 

Sandy, and the Gulf of Mexico oil spill [32]. Remote-sensing derived data and spatial analyses of both  

environment and human health data can significantly contribute both to this emerging research area as 

well as to public health practice and policy. For example, the use of remote sensing data allows us to 

identify areas affected by high levels of PM2.5 and to translate findings into tailored proactive health 

education messages targeting sensitive sub-populations such as children with childhood asthma as well 

as their health care providers. Employing the analytical capabilities of a PHE approach can be used to 

help us identify both distal and proximal surrogate indicators of exposure in the absence of direct  

exposure measurements.  

In addition, a PHE approach has implications not only for health care, public and environmental 

health researchers but for health care, public and environmental health, and social service providers,  

as well. Tools such as health impact assessments (HIA), community mapping, and public participatory 

geographic information systems (PPGIS) can be used to facilitate not only collaborative learning but 

also to stimulate concrete and effective contributions to research, practice and policy beyond a specific 

study [65–67]. HIAs have proven to be informative, yet such assessments are not uniformly used when 

developing new environmental policies. A PHE database can complement HIAs by providing access to 

more accurate exposure data from a practice-based, upstream, historical context. Application of a PHE 

paradigm to health disparities provides the foundation for more effectively translating science into  

practice. Similarly, PHE derived data and maps can be used to assist health care providers make  

prescriptive recommendations about behaviors outside the clinic walls by identifying threats within the 

social ecological environments in which individual patients live, work, learn, play, and pray and  

resources to mitigate them. 

4.3. Policy Implications. 

From an environmental health perspective, more accurate exposure information at the individual 

and community level can facilitate translation into more effective health and environmental  

policies [68]. Likewise, gaps in existing policy can inform research priorities. For example,  

identification of vulnerable populations can lead to environmental health policies that offer better  

community protection, with an aim of promoting health equity in a proactive fashion rather than  

addressing environmental justice issues after the fact [68–74]. Informed by a PHE paradigm,  
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science-driven environmental health policies then can be translated into evidence-based, frontline,  

public health practice to provide more effective, tailored health services for vulnerable sub-populations. 

The analytical and technological functions supported by the PHE database also can serve both an 

important role in informing the development of new social and environmental policies and in evaluating 

the “prevention and protection effectiveness” of existing policies, to ensure they are not having the  

unintended consequence of increasing disparities. This is critical in light of work of Levine and  

colleagues [75–77] who have previously shown clear relationships between the passage of federal  

laws which were intended to increase coverage of health benefits, and subsequent increases in  

racial health disparities. 

The PHE paradigm can be used to strengthen the linkages between science, practice and public  

policy, resulting in improved health and wellbeing (see Figure 5). PHE informed research should lead 

to the identification of gaps in practice and strategies for reducing risk. As with practice gaps,  

a PHE informed assessment of health system functioning can elucidate gaps in public policy,  

and strategies for translating and applying research findings into policy. Frontline public health  

practitioners are well positioned to inform the health disparities research agenda by providing real 

world feedback on the effectiveness of practice and policies, especially those originally intended to 

advance community protection and address historic burden of health disparities.  

Figure 5. Public health exposome: informing science, policy and practice. 

 

4.4. Community Engagement  

Increasingly, community based participatory research (CBPR) methods have been employed to  

examine the social-ecological context of health disparities which considers the determinants of health 

and disease to include a broad range of factors, including biomedical, social, economic, cultural,  

historical, and political [78–80]. CBPR has been promoted as a co-learning and empowering process 

that facilitates the reciprocal transfer of knowledge, skills, capacity, and power between academic and 

community partners rather than being a specific research methodology [81–83]. There is increasing  

evidence which supports the use of CBPR as an effective strategy for building trust between researchers, 

communities and populations being studied, contributing to the quality of study designs, methods and 

dissemination of findings, and stimulating practice-based research. Because the research is “grounded” 
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in the real life experiences of people, findings are more likely to lead to collective action and policy 

change [84]. Community-academic partnerships have proven specifically effective in post-disaster  

settings where the relevance of research to policy and practice is paramount [85].  

Public participatory geographic information systems (PPGIS) offers a new approach for engaging 

community partners in health disparities research within a place-based ecological framework,  

advancing CBPR methods by employing crowdsourcing, smart phones, and other personalized data  

collection technologies and applications [86–91]. PPGIS harnesses emerging information tools and  

technologies to gather, measure, analyze, and map place-based, geospatial captured data which can be 

used to visualize population level risk factors and community assets, conduct environmental health  

impact and neighborhood needs assessments, and develop and implement targeted interventions aimed 

at improving health conditions at a neighborhood level [92,93]. PPGIS is a promising approach that 

can be used to provide: (1) community partners with access to historical data, resources, and interactive 

mapping tools that can be used to analyze the environmental context of user generated questions about 

health disparities; (2) baseline data which can be used to evaluate the impact of targeted interventions;  

and (3) an informatics infrastructure that can accommodate data collected from smart phone,  

crowdsourcing, and social media technologies. It also can help overcome challenges arising from  

limited publicly available data. 

Our team has combined the use of PPGIS and crowdsourcing methods, customized smart phones, 

and interactive mapping websites to put the power of GIS into the hands of community members  

allowing community end users to visualize environmental conditions, assets, and risk factors  

at a neighborhood level with minimal training [34]. We currently are pioneering the integration  

of PPGIS methods with interactive mapping websites (see: http://www.immemphis.com [53], 

http://www.communitymappingforhealthequity.org [54] and which incorporate Mappler© technology 

to provide community partners with access to data, maps, and decision support tools, enabling them to 

identify and address issues of concern without the need for academic intermediaries. Mappler© is a 

smart phone application that supports real-time data collection at a neighborhood level by community  

partners [92] and is capable of taking full advantage of built-in, smart phone features, including  

camera, internet access, time stamp, light measures, gyroscope, accelerometer, GPS and Bluetooth  

technologies with near real time interface to internet linked databases.  

In 2012, we used PPGIS and crowdsourcing methods and Mappler© technology to address the  

gas shortages in the aftermath of Super storm Sandy in the New York/New Jersey region, in near real 

time [94]. Mappler© was used to develop a customized brief survey for the smartphone which, in turn, 

was used by a group of volunteer high school students to call all of the service stations in the New 

York/New Jersey coast areas affected by Super storm Sandy about their gas availability [95]. Data were 

updated daily to the customized website: http://mappler.net/gasstation/ until the gas availability crisis  

subsided [96]. Survey questions included whether there was a telephone response, whether the gas  

station was open, their hours, if the service station had gas available, the types of gas availability, how 

long they expected it to last, current waiting time, and whether they were using a back-up generator for 

power. While the customized website was developed to respond to the gas availability needs of affected  

residents, Mappler© also was used by both FEMA and White House officials during the immediate aftermath 

of Hurricane Sandy to monitor gas availability and plan emergency response efforts, demonstrating the 

huge upside potential of PPGIS and related crowdsourcing and social media technologies. 
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4.5. Transdisciplinary Research Training  

Operationalization of a public health exposome into four broad domains has had the effect of  

stimulating transdisciplinary collaborations. This has profound implications both for how we  

conceptualize the composition of research teams as well as for how we organize and structure research 

training cores within health disparities and environmental health research centers. To effectively  

conduct research informed by a PHE approach requires research teams to include scientists with highly 

specialized knowledge and skills from a broad array of disciplines, including the natural/earth sciences, 

engineering and urban planning, social and behavioral sciences, and policy sciences; content experts in 

each of the broad areas of health disparities, including clinicians, toxicologists, and molecular  

epidemiologists; and highly specialized professionals, in mathematics and computer science, GIS,  

web design and information technology, bio-informatics, “Big Data”, and statistics. Creating a cadre of 

emerging, transdisciplinary scholars skilled in this broad array of fields however, will require the  

breaking down of barriers created by traditional academic disciplines as well as existing research  

funding mechanisms. 

5. Limitations  

Construction of a single, integrated, public health exposome database offers many challenges that 

will require significant commitment and resources to maintain and update. Obtaining data in each of 

the different domains of the PHE, for instance, provides its own set of unique issues. Some of these  

challenges are cross-cutting, while others are more specific to a specific domain or unique to a dataset.  

Cross-cutting issues include a lack of standardization of how social constructs are defined and how 

variables are coded, spatially and temporally, data collection protocols, harmonization standards,  

policies, and regulatory frameworks. Development of a common informatics infrastructure that  

supports de-identification of data, data sharing, management, storage; protocols for updating data,  

standardization of data dictionaries including nomenclature and meta-data; and the use of restricted 

and crowd-sourced data also are needed. In addition, validation and vetting of data generated from  

social media have not yet been fully addressed.  

Restrictions in accessing sub-county level health data present another challenge. These current  

restrictions prevent use of personal health data which might be useful in identifying and targeting  

“hot spots” and severely restrict research efforts that promote a population health approach to the  

elimination of health disparities. Laws that were enacted to ensure patient and/or provider confidentiality 

present a major challenge to the PHE approach and public health research. The Health Insurance  

Portability and Accountability Act of 1996 [97] and the Public Health Service Act (42 U.S. Code  

242m(d)) [98] currently prohibit data collected by the National Center for Health Statistics from being 

displayed in any way that might allow the identification of an individual in a geographic area.  

However, there is no single standard used by federal, state and local agencies to protect confidentiality. 

Some agencies use a minimum numerator (e.g., HRSA data warehouse suppresses data for birth and 

infant mortality statistics for aggregated values where the value for any single combination of gender 

and race for the year is less than 10 for the given geography (http://datawarehouse.hrsa.gov/ 

data/aboutdata/infantmortalitydatasupression.aspx) [99] while others use a minimum denominator 
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(HIPAA guidelines allow record-level data to be shared for geographic areas with more than  

20,000 people). Further complicating this is that policies on data suppression have changed over time 

based on disease and changes in laws resulting in different data use policies.  

Another challenge we encountered was that annual, county-level mortality data from CDC Wonder 

(the main source for mortality data) often are unavailable due to small numbers resulting in a large 

amount of unreliable data, particularly in rural counties, where the number of annual, cause specific 

deaths are fewer than ten. To get around this, we aggregated multiple years of data to be able to generate 

a rate for a multi-year period. Without access to geo-spatial information for sub-county health data, future 

opportunities to address population health and target interventions to health disparities populations in  

greatest need will be severely hampered and its usefulness for identifying and targeting disparities limited. 

One of the greatest challenges in adapting a PHE approach, however, is that it will require a revolution 

both in the ways that science is conducted and funded [100]. The PHE moves away from a traditional, 

categorical, reductionist approach towards an integrated, holistic approach in understanding the causal 

pathways through which exogenous and endogenous exposures operate, their impact on biological  

and bio-psycho-social systems, and ultimately on their combined impact on personal health and  

community-level health disparities. This falls outside the current domain of any specific NIH center or 

institute raising the question of which agency will fund this type of transdisciplinary research.  

6. Conclusions  

Scientific understanding of how external exogenous environmental exposures are related to  

individual endogenous exposures at the target organ level and the effects of these exposures on  

biological systems and personal health outcomes and their potential impact on population health  

disparities is in its formative stages. A PHE paradigm envisions the origins of health disparities as the 

continuous and dynamic interface between person and environment from conception to death,  

over time, space, and place. It uses a life course, systems approach and a social ecological theoretical 

framework for linking exogenous and endogenous exposures across the lifespan, providing more  

complete exposure pathway models, and engaging community participation in the research process. 

The PHE provides opportunities for compiling a more complete exposure profile than what is available 

today in terms of space, place, and time with more accurate measures of when, how often, how long, 

and how much exposure occurred. It adds to the current exposomics literature by increasing our  

understanding of the impact of multiple exogenous exposures, the social gradient of health,  

how biological systems are affected over time by environmental exposures, the impact of those  

exposures at a molecular level, and their combined contribution to disparities at a population level.  

The speed with which our understanding of the relationships between exogenous and endogenous  

exposures develops will have a great deal to do with the capacity of PHE data to achieve its full potential. 

The current PHE data repository was derived primarily from publically available datasets. The data 

infrastructure allows both for ongoing expansion of the database, including the addition of new data 

sets and additional years of data, as well as for the incorporation of greater amounts of both personal 

and population level data from a variety of sources, such as local government, electronic health  

records, wearable health devices, PPGIS crowd sourcing, and web mapping services (WMS).  

With adequate safeguards, the data infrastructure could readily be expanded to include personal health 
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data, such as those derived from electronic health records, longitudinal cohort studies, syndromic  

surveillance systems, and health information exchanges.  

A PHE approach supports retrospective and prospective systems theory modeling and methods,  

including advanced and complex multi-level, spatial, Bayesian, and high throughput mathematical  

designs. Towards this end, we have pioneered the use of data-driven, graph theory/combinatorial  

techniques and analytics from computational biology to identify relationships among the myriad of  

environmental exposure and population health data points. High throughput mathematical analysis  

strategies allow for analysis of vast amounts of secondary data which allow for a larger study denominator, 

overcoming a major flaw of many environmental epidemiologic studies. The spatial, temporal,  

and nested nature of the dataset makes it a natural source for applying a wide range of analytics  

including Bayesian, multi-level, and computational spatial analysis.  

The use of longitudinal data also provides an alternative approach to collecting cost-prohibitive  

exposure data. Used in conjunction with longitudinal cohort studies that incorporate biological,  

genomic, and tissue samples with clinical and social-behavioral data, the PHE approach has the  

potential to move science a step closer towards identifying the biological mechanisms through which 

environmental exposures affect health and how they result in population level health disparate.  

The most significant contributions of the PHE are in strengthening exposure characterization from 

three distinct but interdependent perspectives: data generation, storage, and analysis. Other scientific 

contributions of a PHE include how we conceptualize entire, exposure-disease pathways, the need for 

transdisciplinary research teams and training programs, and how we adopt new methods that utilize 

data generated from rapidly developing technological changes in biomedical informatics (electronic 

health records, personal health monitoring devices), GIS, crowdsourcing, smart phone, computer,  

and web technologies.  

A paradigm shift to a PHE approach also provides a promising roadmap for engaging community 

partners and for creating a stronger, multi-faceted evidence base for environmental justice.  

Engaging community partners in research has long been recognized as important not only for the  

development of a better understanding of the causes of health disparities but for the design of more  

effective community interventions and environmental policies. The addition of PPGIS tools such as 

Mappler© interactive mapping technology significantly advances opportunities for community engagement 

by providing community partners with access to technologies and community mapping tools that  

enable them to fully participate in the research process and exposure characterization, strengthening 

the community collaborative foundation of CBPR. Environmental justice research, combined with  

PPGIS-enabled community partners, can inform the translation of evidence-based environmental  

policies into effective frontline public health practice.  

Adoption of a public health exposome approach challenges many of the traditional ways in which 

health disparities research has been conducted, organized, and funded and will require a paradigm shift 

for both health disparities researchers and funding agencies. It will require valuing the use of both data 

driven and hypothesis driven approaches. It will entail the development of new epistemologies and  

theories for conceptualizing the bio-psychos-social pathways through which environment affects 

health. It demands a robust bioinformatics infrastructure and taxonomy for linking personal attribute 

data (genetic, epigenetic, omics, behavior, and psychosocial), direct and indirect environmental  
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exposure data, and health behavior, screening, and outcomes data. It will necessitate the use of new 

theories, models, methods and analytics to understand and assess those relationships.  

Application of an exposure science approach to health disparities has challenged us to rethink how 

the center was organized to best support translational health disparities research. It has required us to 

develop new transdisciplinary pedagogies and training programs to prepare investigators in an era of 

“Big Data”. Embedding a transdisciplinary approach as a required core in future PHE-driven,  

translational research, for instance, will significantly increase the likelihood of building a sustainable 

cadre of new generation, environmental public health scientists and health disparities investigators.  

Rather than creating separate cores around bioinformatics, biostatistics and other research functions we 

chose to establish an Informatics and Analytics Core that supports the integration of diverse types of 

data, including biological, tissue, clinical, imaging, and environmental datasets and an expanded range 

of analytics, including statistical, spatial, and computational analysis. To accomplish this we have had to 

recruit collaborating investigators with expertise in “Big Data”, mathematical modeling and algorithms, 

GIS, mapping, predictive modeling and simulation, and other methods supported by a PHE approach.  

In summary, these authors offer the PHE as an alternative exposure science paradigm that is  

particularly relevant for the study of health disparities. The PHE moves away from a traditional,  

categorical, reductionist approach towards an integrated, systems science approach to understand  

the causal pathways through which exogenous and endogenous exposures operate, their impact on  

biological and bio-psycho-social systems, and ultimately, their combined impact on personal health 

and community-level health disparities.  
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Appendix 1. Glossary 

“Big Data”. Structured and unstructured data sets that are so large and complex that it becomes  

difficult to process them using personal computers or traditional data processing applications.  

Combinatorial Analysis. Identifies the number of permutations and combinations in which  

elements (e.g., data) can be arranged into sets. The elements are usually finite in number, and the  

arrangement is restricted by certain boundary conditions imposed by the particular problem under  

investigation. 

Community-Based Participatory Research (CBPR). A research approach that facilitates the  

reciprocal transfer of knowledge, skills, capacity, and power between academic and community part-

ners.  

Community Mapping. A mapping technology that fosters participatory planning, community  

education, and cooperative organization. 

Crowdsourcing. The process of obtaining needed services, ideas, or content by soliciting  

contributions from a large group of people, especially from an online community. 

Social/Ecological. Theoretical approach that considers social and ecological systems as resilient, 

complex, and linked through feedback mechanisms.  

Exogenous. Developing from external factors. 

Endogenous. Growing or originating from within an organism. 

Exposome. The measure of all the exposures of an individual in a lifetime and how those  

exposures relate to health. 

Geographic Information Systems (GIS). A computer system designed to capture, store, manipulate, 

analyze, manage, and present all types of spatial-temporal and geographical data. 

Graph Theory. A branch of mathematics concerned about how networks can be encoded and their 

properties measured. 

Health Disparities. Inequities that exist when members of certain population groups do not  

benefit from the same health status as other groups. 

Health Impact Assessment. A process for assessing the health impacts of policies, plans and  

projects in diverse communities using quantitative and qualitative data collection methods and  

community participation. 
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Life Cycle Approach. Considers growth and developmental issues unique to different periods of life. 

Paradigm. A new theoretical framework for looking at an issue. 

Public Health Exposome Approach. Uses a systems approach to consider the complex relationships 

between environmental exposures, personal health outcomes, and population level disparities across  

the lifespan.  

Public Health Exposome Framework. Considers the relationships of exogenous and endogenous  

exposures across multiple levels in four environmental domains: natural, built, social, and policy.  

Public Participatory GIS (PPGIS). A specialized application of community-based participatory  

research that engages community participants in data collection by integrating smart phones, GIS,  

and web technologies 

Smart Phones. A mobile phone that combines cellular telephone, Internet access, camera and  

camcorder, GPS, GIS, accelerometer, light meters and other emerging technologies.  

Spatial-Temporal. Incorporates qualities of both time and space. 

Systems Theory. The study of the complex and dynamic relationships and processes through which 

members of a system act as a whole. 

Appendix 2. PHE Data Repository Data Sources 

Social 

1990 U.S. Census Summary Files 

2000 U.S. Census Summary Files 

2010 U.S. Census Summary Files 

ASU GeoDa Center for Geospatial Analysis  

Bureau of Labor Statistics Local Area Unemployment Statistics 

CMS Community Indicator 

DOL/BLS Metropolitan Area Occupational Employment statistics 

FIPS (Federal Information Processing Standards) Code 

Measures of America of the Social Science Research Council, HD Index and Supplemental  

Indicators by County and county equivalent, ALL Veterans by county and war 

National Center for Education Statistics 

Uniform Crime Reporting Program 

U.S. Census Current Population Survey  

U.S. Census American Fact Finder  

U.S. Census American Community Survey 

Built 

American Housing Survey 

Area Health Resource File 

DHUD Affordable Housing-County 

DHUD Low Income Housing Tax Credit Property Data 

EPA Air Facility System (Aerometric Information Retrieval System-AIRS) 
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EPA Facility Registry System 

Farm Program Atlas data by county 

HRSA geospatial Data warehouse 

USPO Vacancy Rates (residential and business) 

USDA US farmer’s market directory 

US DHHS, Center for Medicare & Medicaid Services, Provider of Services File 

Natural 

Centers for Disease Control and Prevention, National Environmental Public Health  

Tracking Network 

EPA Air Quality System 

EPA Greenhouse gas reporting program 

ERS-USDA, State agency data on oil production 

EPA-SRSS County level radon 

EPA Toxics Release Inventory 

EPA Unregulated Contaminant Monitoring Rule (UCMR) program  

NASA (Remotely sensed data) 

USDA ERS Food Environmental Atlas 

USDA Economic Research Service, County Typology codes 

US Department of Homeland Security, Federal Emergency Management Agency 

USGS Data Gateway 

USGS National Water Information System Program 

Policy 

Americans for Nonsmokers’ Rights 

DOL State Minimum Wage laws 

NHTSA States with Primary Seat Belt laws 

Health 

Behavioral Risk Factor Surveillance System  

CDC Wonder 

Center for Medicare & Medicaid Services, Chronic Conditions Database: 2007–2011 

Centers for Medicare and Medicaid Community Indicators 

Child and Adolescent Health Measurement Initiative, National Survey of Children’s Health 

County Health Status Indicators 

Dartmouth Atlas of Health Care 

Fatality Analysis Reporting System (FARS) 

Henry J. Kaiser Family Foundation Life Expectancy at Birth (in years) 

Institute for Health Metrics and Evaluation 

National Cancer Institute State Cancer profiles  
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National Center for Health Statistics 

National Notifiable Disease Surveillance System 

National Vital Statistics System 

Surveillance, Epidemiology, and End Results Program (SEER) 

University of Wisconsin Population Health Institute County Health Rankings 

U.S. Department of Health and Human Services Community Health Status Indicators Report 

U.S. Department of Agriculture Supplemental Nutrition program 

U.S. Department of Transportation, National Highway Traffic Safety Administration 

Appendix 3. Comparison of Data Analyses Methods 

Table A1. Comparison of data analyses methods. 

Comparitive 
Information 

Multi-Level Modeling Spatial-Temporal 
Combinatorial/ 
Graph Theory 

Type of Data 

Individual and group level data with 
a small number of variables/factors 
used to model one (typically) 
response variable 

Geo-coded raster and vector 
data 

Large-scale, 
heterogeneous,  
often high-throughput 

Purpose 

To account for the hierarchical and 
correlation data structure (spatial 
and temporal),  
allowing for the simultaneous 
examination of individual and 
group-level factors. Can be  
used for prediction and  
statistical inference. 

To analyze the spatial and 
temporal relationships among 
diseases, environments, 
population characteristics and 
health disparities within or 
between defined populations 
and geographic areas  

To detect subtle patterns, 
latent relationships, and 
other useful information 
hidden within vast 
collections of sometimes-
only modest correlations 

Methods 

Mixed model analysis of variance or 
regression analysis. The units of 
analysis are usually individuals (at a 
lower level) nested within 
contextual/aggregate units  
(at a higher level).  
The dependent variable must be 
examined at the lowest level  
of analysis. 

Uses topological, geometric, 
or geographic properties of 
data to generate a 
geographically weighted 
regression model of a spatio-
temporal phenomenon 

Employs graph theoretical 
algorithms to pinpoint key 
network structure s and to 
distill statistically robust 
inter-related clusters  

Outcomes 

(1) Quantifies the extent to which 
health outcomes are clustered by 
neighborhood and community 
grouping;  
(2) quantifies how individual risk 
factors vary from neighborhood to 
neighborhood; and (3) quantifies the 
relative importance of individual, 
neighborhood and societal level 
exposures in predicting individual 
health outcomes. 

Can be used to examine the 
relationships and changes in 
patterns over time of 
environmental hazards, 
socioeconomic status, 
socially vulnerable 
neighborhoods, and health 
disparities.  

Analyzes the entire search 
space, reduces 
dimensionality to 
manageable levels, and 
generates hypotheses 
suitable for testing with 
orthogonal methods  
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Table A1. Cont. 

Comparitive 
Information 

Multi-Level Modeling Spatial-Temporal 
Combinatorial/ 
Graph Theory 

Strengths 

Using contextual factors beyond 
individual factors allows for a more 
accurate identification of at-risk 
populations, which can be useful 
when planning health programs 

Providing information on 
spatial and temporal 
relationships among 
variables. 

Unbiased and immune to 
preconception, scalable to 
datasets of immense size, 
exploits novel 
mathematical techniques 
to overcome 
combinatorial bottlenecks 

Limitations 

Group-level correlations can be 
mistakenly 
attributed to individual-level causes, 
since between-study 
variation is typically observational 
even when individual studies are 
randomized experiments 

Spatial dependency leads to 
spatial autocorrelation which 
violates standard statistical 
techniques that assume 
independence among 
observations. 

Sufficient data needed to 
compute correlation 
structures, requires 
special knowledge for 
implementation, tuning 
and refinement 
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