5 research outputs found

    Maintaining Plasmodium falciparum gametocyte infectivity during blood collection and transport for mosquito feeding assays in the field.

    Get PDF
    BACKGROUND: Mosquito feeding assays using venous blood are commonly used for evaluating the transmission potential of malaria infected individuals. To improve the accuracy of these assays, care must be taken to prevent premature activation or inactivation of gametocytes before they are fed to mosquitoes. This can be challenging in the field where infected individuals and insectary facilities are sometimes very far apart. In this study, a simple, reliable, field applicable method is presented for storage and transport of gametocyte infected blood using a thermos flask. METHODS: The optimal storage conditions for maintaining the transmissibility of gametocytes were determined initially using cultured Plasmodium falciparum gametocytes in standard membrane feeding assays (SMFAs). The impact of both the internal thermos water temperature (35.5 to 37.8 °C), and the external environmental temperature (room temperature to 42 °C) during long-term (4 h) storage, and the impact of short-term (15 min) temperature changes (room temp to 40 °C) during membrane feeding assays was assessed. The optimal conditions were then evaluated in direct membrane feeding assays (DMFAs) in Burkina Faso and The Gambia where blood from naturally-infected gametocyte carriers was offered to mosquitoes immediately and after storage in thermos flasks. RESULTS: Using cultured gametocytes in SMFAs it was determined that an internal thermos water temperature of 35.5 °C and storage of the thermos flask between RT (~ 21.3 °C) and 32 °C was optimal for maintaining transmissibility of gametocytes for 4 h. Short-term storage of the gametocyte infected blood for 15 min at temperatures up to 40 °C (range: RT, 30 °C, 38 °C and 40 °C) did not negatively affect gametocyte infectivity. Using samples from natural gametocyte carriers (47 from Burkina Faso and 16 from The Gambia), the prevalence of infected mosquitoes and the intensity of oocyst infection was maintained when gametocyte infected blood was stored in a thermos flask in water at 35.5 °C for up to 4 h. CONCLUSIONS: This study determines the optimal long-term (4 h) storage temperature for gametocyte infected blood and the external environment temperature range within which gametocyte infectivity is unaffected. This will improve the accuracy, reproducibility, and utility of DMFAs in the field, and permit reliable comparative assessments of malaria transmission epidemiology in different settings

    Persistent Submicroscopic Plasmodium falciparum Parasitemia 72 Hours after Treatment with Artemether-Lumefantrine Predicts 42-Day Treatment Failure in Mali and Burkina Faso.

    Get PDF
    A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale

    Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial.

    No full text
    BACKGROUND: Artemisinin combination therapy effectively clears asexual malaria parasites and immature gametocytes but does not prevent posttreatment malaria transmission. Ivermectin (IVM) may reduce malaria transmission by killing mosquitoes that take blood meals from IVM-treated humans. METHODS: In this double-blind, placebo-controlled trial, 120 asymptomatic Plasmodium falciparum parasite carriers were randomized to receive artemether-lumefantrine (AL) plus placebo or AL plus a single or repeated dose (200 µg/kg) of ivermectin (AL-IVM1 and AL-IVM2, respectively). Mosquito membrane feeding was performed 1, 3, and 7 days after initiation of treatment to determine Anopheles gambiae and Anopheles funestus survival and infection rates. RESULTS: The AL-IVM combination was well tolerated. IVM resulted in a 4- to 7-fold increased mortality in mosquitoes feeding 1 day after IVM (P < .001). Day 7 IVM plasma levels were positively associated with body mass index (r = 0.57, P < .001) and were higher in female participants (P = .003), for whom An. gambiae mosquito mortality was increased until 7 days after a single dose of IVM (hazard rate ratio, 1.34 [95% confidence interval, 1.07-1.69]; P = .012). Although we found no evidence that IVM reduced Plasmodium infection rates among surviving mosquitoes, the mosquitocidal effect of AL-IVM1 and AL-IVM2 resulted in 27% and 35% reductions, respectively, in estimated malaria transmission potential during the first week after initiation of treatment. CONCLUSIONS: We conclude that IVM can be safely given in combination with AL and can reduce the likelihood of malaria transmission by reducing the life span of feeding mosquitoes. CLINICAL TRIALS REGISTRATION: NCT0160325
    corecore