30 research outputs found

    Intra- and inter-rater reliability of joint range of motion tests using tape measure, digital inclinometer and inertial motion capturing

    Get PDF
    Background In clinical practice range of motion (RoM) is usually assessed with low-cost devices such as a tape measure (TM) or a digital inclinometer (DI). However, the intra- and inter-rater reliability of typical RoM tests differ, which impairs the evaluation of therapy progress. More objective and reliable kinematic data can be obtained with the inertial motion capture system (IMC) by Xsens. The aim of this study was to obtain the intra- and inter-rater reliability of the TM, DI and IMC methods in five RoM tests: modified Thomas test (DI), shoulder test modified after Janda (DI), retroflexion of the trunk modified after Janda (DI), lateral inclination (TM) and fingertip-to-floor test (TM). Methods Two raters executed the RoM tests (TM or DI) in a randomized order on 22 healthy individuals while, simultaneously, the IMC data (Xsens MVN) was collected. After 15 warm-up repetitions, each rater recorded five measurements. Findings Intra-rater reliabilities were (almost) perfect for tests in all three devices (ICCs 0.886–0.996). Inter-rater reliability was substantial to (almost) perfect in the DI (ICCs 0.71–0.87) and the IMC methods (ICCs 0.61–0.993) and (almost) perfect in the TM methods (ICCs 0.923–0.961). The measurement error (ME) for the tests measured in degree (°) was 0.9–3.3° for the DI methods and 0.5–1.2° for the IMC approaches. In the tests measured in centimeters the ME was 0.5–1.3cm for the TM methods and 0.6–2.7cm for the IMC methods. Pearson correlations between the results of the DI or the TM respectively with the IMC results were significant in all tests except for the shoulder test on the right body side (r = 0.41–0.81). Interpretation Measurement repetitions of either one or multiple trained raters can be considered reliable in all three devices

    Improved ergonomic risk assessment through the combination of inertial sensors and observational methods exemplified by RULA

    No full text
    Zur ergonomischen Beurteilung von Arbeitsplätzen werden „ergonomic risk assessment tools“ (ERAT) verwendet. Mithilfe dieser kann die körperliche Belastung evaluiert und hinsichtlich eines biomechanischen Überlastungsrisikos bewertet werden. Dazu gehören neben Eigenangaben auch observatorische Methoden, deren Ergebnisse in Punktwerten („Scores“) zusammengefasst werden, wie z. B. die RULAMethode („rapid upper limb assessment“). Durch die technische Weiterentwicklung direkter Messmethoden können inertiale Motion-Capture-Systeme im 21. Jahrhundert präzise und kontinuierliche objektive Daten liefern. In einem neuen Ansatz wurde die observatorische Scoring-Methode RULA modifiziert und auf die digital erhobenen Daten angewendet, was differenzierte ergonomische Betrachtungen ganzer Arbeitsabläufe ermöglicht.Ergonomic risk assessment tools are used for the ergonomic assessment of workplaces. These tools can be used to evaluate the risks for biomechanical overload. In addition to self-declarations this also includes observational methods, the results of which are summarized in scores, such as the rapid upper limb assessment (RULA) method. Through the technical development of direct measurement methods, inertial motion capture systems can provide continuous objective data in the twenty-first century. In a new approach, the observational scoring method RULA has been modified and applied to digitally collected data, enabling differentiated ergonomic observations of entire workflows

    Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions

    No full text
    Triathletes often experience incoordination at the start of a transition run (TR); this is possibly reflected by altered joint kinematics. In this study, the first 20 steps of a run after a warm-up run (WR) and TR (following a 90 min cycling session) of 16 elite, male, long-distance triathletes (31.3 ± 5.4 years old) were compared. Measurements were executed on the competition course of the Ironman Frankfurt in Germany. Pacing and slipstream were provided by a cyclist in front of the runner. Kinematic data of the trunk and leg joints, step length, and step rate were obtained using the MVN Link inertial motion capture system by Xsens. Statistical parametric mapping was used to compare the active leg (AL) and passive leg (PL) phases of the WR and TR. In the TR, more spinal extension (~0.5–1°; p = 0.001) and rotation (~0.2–0.5°; p = 0.001–0.004), increases in hip flexion (~3°; ~65% AL−~55% PL; p = 0.001–0.004), internal hip rotation (~2.5°; AL + ~0–30% PL; p = 0.001–0.024), more knee adduction (~1°; ~80–95% AL; p = 0.001), and complex altered knee flexion patterns (~2–4°; AL + PL; p = 0.001–0.01) occurred. Complex kinematic differences between a WR and a TR were detected. This contributes to a better understanding of the incoordination in transition running

    Comparison of joint kinematics in transition running and isolated running in elite triathletes in overground conditions

    No full text
    Triathletes often experience incoordination at the start of a transition run (TR); this is possibly reflected by altered joint kinematics. In this study, the first 20 steps of a run after a warm-up run (WR) and TR (following a 90 min cycling session) of 16 elite, male, long-distance triathletes (31.3 ± 5.4 years old) were compared. Measurements were executed on the competition course of the Ironman Frankfurt in Germany. Pacing and slipstream were provided by a cyclist in front of the runner. Kinematic data of the trunk and leg joints, step length, and step rate were obtained using the MVN Link inertial motion capture system by Xsens. Statistical parametric mapping was used to compare the active leg (AL) and passive leg (PL) phases of the WR and TR. In the TR, more spinal extension (~0.5–1°; p = 0.001) and rotation (~0.2–0.5°; p = 0.001–0.004), increases in hip flexion (~3°; ~65% AL−~55% PL; p = 0.001–0.004), internal hip rotation (~2.5°; AL + ~0–30% PL; p = 0.001–0.024), more knee adduction (~1°; ~80–95% AL; p = 0.001), and complex altered knee flexion patterns (~2–4°; AL + PL; p = 0.001–0.01) occurred. Complex kinematic differences between a WR and a TR were detected. This contributes to a better understanding of the incoordination in transition running

    Isolating the Unique and Generic Movement Characteristics of Highly Trained Runners

    No full text
    Human movement patterns were shown to be as unique to individuals as their fingerprints. However, some movement characteristics are more important than other characteristics for machine learning algorithms to distinguish between individuals. Here, we explored the idea that movement patterns contain unique characteristics that differentiate between individuals and generic characteristics that do not differentiate between individuals. Layer-wise relevance propagation was applied to an artificial neural network that was trained to recognize 20 male triathletes based on their respective movement patterns to derive characteristics of high/low importance for human recognition. The similarity between movement patterns that were defined exclusively through characteristics of high/low importance was then evaluated for all participants in a pairwise fashion. We found that movement patterns of triathletes overlapped minimally when they were defined by variables that were very important for a neural network to distinguish between individuals. The movement patterns overlapped substantially when defined through less important characteristics. We concluded that the unique movement characteristics of elite runners were predominantly sagittal plane movements of the spine and lower extremities during mid-stance and mid-swing, while the generic movement characteristics were sagittal plane movements of the spine during early and late stance

    Balance Stability and Cervical Spine Range of Motion While Wearing a Custom-Made Mandibular Splint with Special Consideration of the Sex

    No full text
    Introduction: An altered dental occlusion can also affect balance stability or mobility. Thus, the aim of this study was to examine whether wearing a mandibular splint, which retains the occlusion close to the centric occlusion, can increase or decrease balance stability and the range of motion (ROM) of the cervical spine as opposed to the habitual occlusion, and if there is a difference between men and women. Material and methods: In this study, 41 male (34.7 ± 11.4 years) and 50 female subjects (29.3 ± 12.7 years) participated. Cervical spine ROM was recorded using the Zebris CMS 70P system. For balance stability, a pressure measuring platform integrated into the treadmill system (FDM-T) of the company Zebris® Medical GmbH was used. Here, the area of the ellipse and the length of the Center of Pressure (CoP) was recorded whilst in the bipedal and unipedal stance. Results: The sex comparison showed significant differences for the area of the ellipse of the right leg and ROM extension in the habitual occlusion: females showed a better balance stability and a larger ROM extension. When wearing the splint, only the CoP of the left leg was significant with a better balance stability in female subjects. Within the male subjects, the ellipse area in the bipedal and unipedal (left/right) stance showed mostly significant reductions, while the rotation left and right as well as the lateral flexion (left/right) improved when wearing the splint. Female subjects, when wearing the splint, showed a significant decrease of the ellipse area and the CoP length when standing on either leg. Flexion, rotation to the right and lateral flexion to the left/right, all increased significantly. Conclusion: Wearing a splint that keeps the jaw close to the centric relation improved balance stability and increased the ROM of the cervical spine for both male and female subjects. Women may have marginally different basic balance stability strategies than men, with regard to bipedal and unipedal standing. Nevertheless, there are scarcely any differences between the two sexes in the adaptation when wearing a splint. Changing the jaw relation in healthy adults can possibly support the release of movement potentials that simplify the performance of everyday activities or sports movements

    Influence of dental occlusion conditions on plantar pressure distribution during standing and walking – a gender perspective

    No full text
    The aim of this study was to investigate gender-specific influences of different symmetric and asymmetric occlusion conditions on postural control during standing and walking. The study involved 59 healthy adult volunteers (41 f/19 m) aged between 22 and 53 years (30.2 ± 6.3 years). Postural control measurements were carried out using a pressure plate by measuring plantar pressure distribution during standing and walking test conditions. Seven different occlusion conditions were tested. Prior to a MANOVA model analysis, the relationship between the two test conditions were checked using a factor analysis with a varying number of factors (between 2 and 10). The plantar pressure distributions during walking and standing are independent test conditions. The coefficient of variance across all variables between the conditions and genders was not significant: t(46) = 1.51 (p = 0.13). No statement can be made whether, or not, the influence of gender is greater than the influence of the conditions. Healthy male and female test subjects did not show any difference between seven occlusion conditions on the plantar pressure distribution while standing or walking. No differences between the genders were found for any of the investigated variables. In contrast to custom-made occlusion splints, simple cotton rolls appear not to influence the neuromuscular system in a systematic manner

    The movement profile of habitual vacuuming as a cyclic movement - a pilot study

    No full text
    Background: Vacuum cleaning, which is associated with musculoskeletal complaints, is frequently carried out in private households and by professional cleaners. The aim of this pilot study was to quantify the movements during habitual vacuuming and to characterize the movement profile with regard to its variability. Methods: The data were collected from 31 subjects (21 f/10 m) using a 3D motion analysis system (XSens). Eight vacuum cleaners were used to vacuum polyvinyl chloride (PVC) and carpet floors. In 15 joints of the right upper extremity, the trunk and the lower extremities, Principal Component Analysis was used to determine the predominantly varying joints during vacuuming. Results: The movements of the trunk and the lower extremities were relatively constant and, therefore, had less influence. The shoulder, elbow and wrist joints were identified as joints that can be decisive for the movement profile and that can be influenced. These joints were represented in the course of the vacuuming cycle by the mean movement with its standard deviation. Conclusion: In summary, the generalization of a movement profile is possible for the trunk and the lower extremities due to the relative homogeneity. In future it will be necessary to identify factors influencing variability in order to draw conclusions about movement ergonomics

    The movement profile of trunk and neck during habitual vacuuming

    No full text
    Musculoskeletal disorders of the trunk and neck are common among cleaners. Vacuum cleaning is a demanding activity. The aim of this study was to present the movement profile of the trunk and neck during habitual vacuuming. The data were collected from 31 subjects (21f./10 m) using a 3D motion analysis system (Xsens). 10 cycles were analysed in vacuuming PVC and carpet floors with 8 vacuum cleaners. The joint angles and velocities were represented statistically descriptive. When vacuuming, the trunk is held in a forwardly inclined position by a flexion in the hip and rotated from this position. In the joint angles and velocities of the spine, the rotation proved to be dominant. A relatively large amount of movement took place in the cervical spine and also in the lumbar spine. The shown movement profile is rather a comfort area of vacuuming which may serve as a reference for ergonomics in vacuuming

    Influence of design of dentist’s chairs on body posture for dentists with different working experience

    No full text
    Background; Musculoskeletal disorders (MSD) are a common health problem among dentists. Dental treatment is mainly performed in a sitting position. The aim of the study was to quantify the effect of different ergonomic chairs on the sitting position. In addition, it was tested if the sitting position of experienced workers is different from a non-dental group. Methods; A total of 59 (28 m/31f) subjects, divided into two dentist groups according to their work experience (students and dentists (9 m/11f) < 10 years, dentists (9 m/10f) ≥ 10 years) and a control group (10 m/10f) were measured. A three-dimensional back scanner captured the bare back of all subjects sitting on six dentist’s chairs of different design. Initially, inter-group comparisons per chair, firstly in the habitual and secondly in the working postures, were carried out. Furthermore, inter-chair comparison was conducted for the habitual as well as for the working postures of all subjects and for each group. Finally, a comparison between the habitual sitting posture and the working posture for each respective chair (intra-chair comparison) was conducted (for all subjects and for each group). In addition, a subjective assessment of each chair was made. For the statistical analysis, non-parametric tests were conducted and the level of significance was set at 5%. Results: When comparing the three subject groups, all chairs caused a more pronounced spinal kyphosis in experienced dentists. In both conditions (habitual and working postures), a symmetrical sitting position was assumed on each chair. The inter-chair comparisons showed no differences regarding the ergonomic design of the chairs. The significances found in the inter-chair comparisons were all within the measurementerror and could, therefore, be classified as clinically irrelevant. The intra-chair comparison (habitual sitting position vs. working sitting position) illustrated position-related changes in the sagittal, but not in the transverse, plane. These changes were only position-related (forward leaned working posture) and were not influenced by the ergonomic sitting design of the respective chair. There are no differences between the groups in the subjective assessment of each chair. Conclusions; Regardless of the group or the dental experience, the ergonomic design of the dentist’s chair had only a marginal influence on the upper body posture in both the habitual and working sitting postures. Consequently, the focus of the dentist’s chair, in order to minimize MSD, should concentrate on adopting a symmetrical sitting posture rather than on its ergonomic design
    corecore