14 research outputs found

    Cardiac Effects of a Single Dose of Pimobendan in Cats With Hypertrophic Cardiomyopathy; A Randomized, Placebo-Controlled, Crossover Study

    Get PDF
    Background: Pimobendan has been shown to impart a significant survival benefit in cardiomyopathic cats who receive it as part of heart failure therapy. However, use of pimobendan remains controversial in cats with hypertrophic cardiomyopathy (HCM) due to lack of pharmacodynamic data for pimobendan in cats with HCM and due to theoretical concerns for exacerbating left ventricular outflow tract obstructions. Hypothesis/Objectives: Our objective was to investigate the cardiac effects of pimobendan in cats with HCM. We hypothesized that pimobendan would not exacerbate left ventricular outflow tract obstructions and that it would improve echocardiographic measures of diastolic function. Animals: Thirteen purpose-bred cats were studied from a research colony with naturally-occurring HCM due to a variant in myosin binding protein C. Methods: Cats underwent two examinations 24 h apart with complete standard echocardiography. On their first day of evaluation, they were randomized to receive oral placebo or 1.25 mg pimobendan 1 h prior to exam. On their second examination, they were crossed over and received the remaining treatment. Investigators were blinded to all treatments. Results: The pimobendan group had a significant increase in left atrial fractional shortening (pimobendan group 41.7% ± 5.9; placebo group 36.1% ± 6.0; p = 0.04). There was no significant difference in left ventricular outflow tract (LVOT) velocities between the groups (pimobendan group 2.8 m/s ± 0.8; placebo group 2.6 m/s ± 1.0). There were no significant differences between the number of cats with LVOT obstructions between groups (12 in pimobendan group; 11 in placebo group; p = 1.00). There were no detectable differences in any systolic measures, including left ventricular fractional shortening, mitral annular plane systolic excursion, and tricuspid annular plane systolic excursion. Doppler-based diastolic function assessment was precluded by persistent tachycardia. Conclusions: Improved left atrial function in the pimobendan group could explain some of the reported survival benefit for HCM cats in CHF. Pimobendan did not exacerbate LVOT obstructions and thus may not be contraindicated in HCM cats with LVOT obstructions. Future studies are needed to better characterize other physiologic effects, particularly regarding diastolic function assessment, and to better assess safety of pimobendan over a longer time-course.Center for Companion Animal Health at the University of California Davis, School of Veterinary Medicine [2016-15-F]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Closure of a patent ductus arteriosus in a 2-week-old llama cria using an Amplatz canine duct occluder.

    No full text
    A two-week-old female llama cria was brought to the UC Davis Large Animal Hospital for evaluation of a cardiac murmur and suspected syncopal episodes. A grade IV/VI left basilar continuous murmur was present on cardiac auscultation. Echocardiography revealed a left-to-right shunting patent ductus arteriosus (PDA), mild left ventricular enlargement, scant pericardial effusion, and a suspected persistent left cranial vena cava. The PDA was successfully closed with an Amplatz canine duct occluder. Mild mitral regurgitation was present on echocardiography performed 7 d following PDA occlusion. No syncopal episodes were observed in hospital prior to or following PDA occlusion. At approximately 1 mo following PDA closure, a grade I/VI left apical systolic murmur was present and the cria's body condition was improved. Key clinical message: Patent ductus arteriosus closure is achievable in New World camelids using interventional cardiology which provides a minimally invasive treatment option for valuable or companion animals. Since interventional cardiac catheterization is commonly performed in small animal species, veterinary cardiologists are well-equipped to apply these skills to camelids

    A genetic polymorphism in P2RY 1 impacts response to clopidogrel in cats with hypertrophic cardiomyopathy

    No full text
    Abstract Clopidogrel is converted to its active metabolite by cytochrome P450 isoenzymes and irreversibly inhibits platelet activation by antagonizing the adenosine-diphosphate (ADP) receptor. It is frequently used in cats with hypertrophic cardiomyopathy (HCM) to prevent thromboembolic complications. However, significant interpatient variability of the response to clopidogrel therapy has been suspected. In this study, we assessed the impact of single nucleotide polymorphisms (SNPs) within ADP receptor (P2RY1, P2RY12) and cytochrome P450 isoenzyme (CYP2C41) genes on platelet inhibition by clopidogrel administration in cats with HCM. Forty-nine cats completed the study, and blood samples were obtained before and after clopidogrel therapy to assess the degree of platelet inhibition based on flow cytometry and whole blood platelet aggregometry. Plasma concentrations of clopidogrel metabolites were measured after the last dose of clopidogrel. Whole blood platelet aggregometry revealed a significant reduction of platelet inhibition by clopidogrel in cats with the P2RY1:A236G and the P2RY12:V34I variants. The association with the P2RY1:A236G variant and clopidogrel resistance remained significant after adjustment for multiple comparisons. This study demonstrated that a genetic polymorphism in the P2RY1 gene altered response to clopidogrel therapy and suggests that clinicians may consider alternative or additional thromboprophylactic therapy in cats with the P2RY1:A236G variant
    corecore