84 research outputs found

    Association of parent-child interactions with parental psychological distress and resilience during the COVID-19 pandemic

    Get PDF
    IntroductionThe effects of psychological distress/resilience on parent-child engagement (e.g., family dinners, reading) during the COVID-19 pandemic have not been well studied. Among very young children from underrepresented backgrounds enrolled in the ongoing longitudinal Bronx Mother Baby Health Study of healthy term infants, we (1) examined associations between exposures to COVID-19-related events, demographic factors and parental psychological distress and resilience; and (2) correlated these factors with parent-child engagement activities.MethodsBetween June 2020-August 2021, parents of 105 Bronx Mother Baby Health Study participants aged birth-25 months completed questionnaires related to exposures to COVID-19-related events, frequency of positive parent-child engagement activities, food and housing insecurity, and parental psychological distress and resilience. Families were also asked open ended questions about the pandemic's impact.Results29.8% and 47.6% of parents reported food and housing insecurity, respectively. Greater exposures to COVID-19-related events were associated with increased parental psychological distress. Positive parent-child interactions were associated with demographic factors and higher levels of maternal education, but not with exposures to COVID-19-related events.DiscussionThis study adds to a growing body of literature on the negative impacts of COVID-19 exposures and psychosocial stressors on families during the pandemic, supporting the need for enhanced mental health resources and social supports for families

    Expression and signal transduction of the glucagon receptor in βTC3 cells

    Get PDF
    AbstractThe expression and signal transduction of the glucagon receptor (GR) have been studied in βTC3 cells. Northern blot and RT-PCR analysis indicated the expression of the GR gene in βTC3 cells. One-5 nM glucagon stimulated a 2.5-fold increase in the IPs production. At glucagon concentrations higher than 5 nM, the production of IPs was blunted but not abolished. The accumulation of intracellular cAMP was observed following the stimulation with 5 nM of glucagon. A maximal 4.5-fold increase in cAMP was observed using 250 nM glucagon and higher. Comparative studies using a glucagon anatogonist, des-His1[Glu]9glucagon, showed no effect on intracellular cAMP and IPs in βTC3 cells. Our data shows that the GR gene is expressed in βTC3 cells. The GR in βTC3 cells transmits its intracellular signal by causing the accumulation of both IPs and cAMP

    Maintenance of GLUT4 expression in smooth muscle prevents hypertension‐induced changes in vascular reactivity

    Full text link
    Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth‐muscle‐specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild‐type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium‐intact aortic rings from hypertensive wild‐type mice but not in aortae of SMG4 mice. Inhibition of Rho‐kinase equally reduced serotonin‐stimulated contractility in aortae of hypertensive wild‐type and SMG4‐mice. In addition, acetylcholine‐stimulated relaxation was significantly decreased in aortic rings of hypertensive wild‐type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase‐2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase‐2 had no effect on relaxation in rings of hypertensive wild‐type mice. Cyclooxygenase‐2 protein expression was decreased in hypertensive wild‐type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium‐dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.e12299In the smooth muscle of aortae of hypertensive mice, expression of GLUT4 is decreased. Maintenance of aortic smooth muscle GLUT4 expression prevents hypertension‐mediated changes in vasomotor response. These effects include decreasing/preventing endothelial dysfunction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110755/1/phy212299.pd

    The Glucagon Receptor Is Required for the Adaptive Metabolic Response to Fasting

    Get PDF
    SummaryGlucagon receptor (Gcgr) signaling maintains hepatic glucose production during the fasting state; however, the importance of the Gcgr for lipid metabolism is unclear. We show here that fasted Gcgr−/− mice exhibit a significant increase in hepatic triglyceride secretion and fasting increases fatty acid oxidation (FAO) in wild-type (WT) but not in Gcgr−/− mice. Moreover fasting upregulated the expression of FAO-related hepatic mRNA transcripts in Gcgr+/+ but not in Gcgr−/− mice. Exogenous glucagon administration reduced plasma triglycerides in WT mice, inhibited TG synthesis and secretion, and stimulated FA beta oxidation in Gcgr+/+ hepatocytes. The actions of glucagon on TG synthesis and FAO were abolished in PPARα−/− hepatocytes. These findings demonstrate that the Gcgr receptor is required for control of lipid metabolism during the adaptive metabolic response to fasting

    Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signalling

    Get PDF
    Dysfunctional regulation of signalling pathways downstream of the insulin receptor plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. In this study we report both in vitro and in vivo experimental evidence for a role of Cullin-RING E3 ubiquitin ligase 7 (CRL7) in the regulation of insulin signalling and glucose homeostasis. We show that Cul7−/− mouse embryonic fibroblasts displayed enhanced AKT and Erk MAP kinase phosphorylation upon insulin stimulation. Depletion of CUL7 by RNA interference in C2C12 myotubes led to increased activation of insulin signalling pathways and cellular glucose uptake, as well as a reduced capacity of these cells to execute insulin-induced degradation of insulin receptor substrate 1 (IRS1). In vivo, heterozygosity of either Cul7 or Fbxw8, both key components of CRL7, resulted in elevated PI3 kinase / AKT activation in skeletal muscle tissue upon insulin stimulation when compared to wild-type controls. Finally, Cul7+/− or Fbxw8+/− mice exhibited enhanced insulin sensitivity and plasma glucose clearance. Collectively, our findings point to a yet unrecognized role of CRL7 in insulin-mediated control of glucose homeostasis by restraining PI3 kinase / AKT activities in skeletal muscle cells

    Protective and Enhancing HLA Alleles, HLA-DRB1*0901 and HLA-A*24, for Severe Forms of Dengue Virus Infection, Dengue Hemorrhagic Fever and Dengue Shock Syndrome

    Get PDF
    Dengue has become one of the most common viral diseases transmitted by infected mosquitoes (with any of the four dengue virus serotypes: DEN-1, -2, -3, or -4). It may present as asymptomatic or illness, ranging from mild to severe disease. Recently, the severe forms, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), have become the leading cause of death among children in Southern Vietnam. The pathogenesis of DHF/DSS, however, is not yet completely understood. The immune response, virus virulence, and host genetic background are considered to be risk factors contributing to disease severity. Human leucocyte antigens (HLA) expressed on the cell surface function as antigen presenting molecules and those polymorphism can change individuals' immune response. We investigated the HLA-A, -B (class I), and -DRB1 (class II) polymorphism in Vietnamese children with different severity (DHF/DSS) by a hospital-based case-control study. The study showed persons carrying HLA-A*2402/03/10 are about 2 times more likely to have severe dengue infection than others. On the other hand, HLA-DRB1*0901 persons are less likely to develop DSS with DEN-2 virus infection. These results clearly demonstrated that HLA controlled the susceptibility to severe forms of DV infection

    Animal models of in utero exposure to a high fat diet: A review

    Get PDF
    AbstractThe incidence of metabolic disease, including type 2 diabetes and obesity, has increased to epidemic levels in recent years. A growing body of evidence suggests that the intrauterine environment plays a key role in the development of metabolic disease in offspring. Among other perturbations in early life, alteration in the provision of nutrients has profound and lasting effects on the long term health and well being of offspring. Rodent and non-human primate models provide a means to understand the underlying mechanisms of this programming effect. These different models demonstrate converging effects of a maternal high fat diet on insulin and glucose metabolism, energy balance, cardiovascular function and adiposity in offspring. Furthermore, evidence suggests that the early life environment can result in epigenetic changes that set the stage for alterations in key pathways of metabolism that lead to type 2 diabetes or obesity. Identifying and understanding the causal factors responsible for this metabolic dysregulation is vital to curtailing these epidemics. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease
    corecore