5 research outputs found

    The role of ZntA in Klebsiella pneumoniae zinc homeostasis

    Get PDF
    Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that is a leading cause of healthcare-associated infections, including pneumonia, urinary tract infections, and sepsis. Essential to the colonization and infection by K. pneumoniae is the acquisition of nutrients, such as the transition metal ion zinc. Zinc has crucial structural and catalytic roles in the proteome of all organisms. Nevertheless, in excess, it has the potential to mediate significant toxicity by dysregulating the homeostasis of other transition elements, disrupting enzymatic processes, and perturbing metalloprotein cofactor acquisition. Here, we sought to elucidate the zinc detoxification mechanisms of K. pneumoniae, which remain poorly defined. Using the representative K. pneumoniae AJ218 strain, we showed that the P-type ATPase, ZntA, which is upregulated in response to cellular zinc stress, was the primary zinc efflux pathway. Deletion of zntA rendered K. pneumoniae AJ218 highly susceptible to exogenous zinc stress and manifested as an impaired growth phenotype and increased cellular accumulation of the metal. Loss of zntA also increased sensitivity to cadmium stress, indicating a role for this efflux pathway in cadmium resistance. Disruption of zinc homeostasis in the K. pneumoniae AJ218 ΔzntA strain also impacted manganese and iron homeostasis and was associated with increased production of biofilm. Collectively, this work showed the critical role of ZntA in K. pneumoniae zinc tolerance and provided a foundation for further studies on zinc homeostasis and the future development of novel antimicrobials to target this pathway. IMPORTANCE: Klebsiella pneumoniae is a leading cause of healthcare-associated infections, including pneumonia, urinary tract infections, and sepsis. Treatment of K. pneumoniae infections is becoming increasingly challenging due to high levels of antibiotic resistance and the rising prevalence of carbapenem-resistant, extended-spectrum β-lactamases producing strains. Zinc is essential to the colonization and infection by many bacterial pathogens but toxic in excess. This work described the first dissection of the pathways associated with resisting extracellular zinc stress in K. pneumoniae. This study revealed that the P-type ATPase ZntA was highly upregulated in response to exogenous zinc stress and played a major role in maintaining bacterial metal homeostasis. Knowledge of how this major bacterial pathogen resists zinc stress provided a foundation for antimicrobial development studies to target and abrogate their essential function.Eve A. Maunders, Katherine Ganio, Andrew J. Hayes, Stephanie L. Neville, Mark R. Davies, Richard A. Strugnell, Christopher A. McDevitt, Aimee Ta

    The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis

    Get PDF
    Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration.Eve A. Maunders, Dalton H. Y. Ngu, Katherine Ganio, Sheikh I. Hossain, Bryan Y. J. Lim, Michael G. Leeming, Zhenyao Luo, Aimee Tan, Evelyne Deplazes, Boštjan Kobe, and Christopher A. McDevit

    Host-Mediated Copper Stress Is Not Protective against Streptococcus pneumoniae D39 Infection

    Get PDF
    Metal ions are required by all organisms for the chemical processes that support life. However, in excess they can also exert toxicity within biological systems. During infection, bacterial pathogens such as Streptococcus pneumoniae are exposed to host-imposed metal intoxication, where the toxic properties of metals, such as copper, are exploited to aid in microbial clearance. However, previous studies investigating the antimicrobial efficacy of copper in vivo have reported variable findings. Here, we use a highly copper-sensitive strain of S. pneumoniae, lacking both copper efflux and intracellular copper buffering by glutathione, to investigate how copper stress is managed and where it is encountered during infection. We show that this strain exhibits highly dysregulated copper homeostasis, leading to the attenuation of growth and hyperaccumulation of copper in vitro. In a murine infection model, whole-tissue copper quantitation and elemental bioimaging of the murine lung revealed that infection with S. pneumoniae resulted in increased copper abundance in specific tissues, with the formation of spatially discrete copper hot spots throughout the lung. While the increased copper was able to reduce the viability of the highly copper-sensitive strain in a pneumonia model, copper levels in professional phagocytes and in a bacteremic model were insufficient to prosecute bacterial clearance. Collectively, this study reveals that host copper is redistributed to sites of infection and can impact bacterial viability in a hypersusceptible strain. However, in wildtype S. pneumoniae, the concerted actions of the copper homeostatic mechanisms are sufficient to facilitate continued viability and virulence of the pathogen. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is one of the world’s foremost bacterial pathogens. Treatment of both localized and systemic pneumococcal infection is becoming complicated by increasing rates of multidrug resistance globally. Copper is a potent antimicrobial agent used by the mammalian immune system in the defense against bacterial pathogens. However, unlike other bacterial species, this copper stress is unable to prosecute pneumococcal clearance. This study determines how the mammalian host inflicts copper stress on S. pneumoniae and the bacterial copper tolerance mechanisms that contribute to maintenance of viability and virulence in vitro and in vivo. This work has provided insight into the chemical biology of the hostpneumococcal interaction and identified a potential avenue for novel antimicrobial development.Stephanie L. Neville, Bliss A. Cunningham, Eve A. Maunders, Aimee Tan, Jacinta A. Watts, Katherine Ganio, Bart A. Eijkelkamp, Victoria G. Pederick, Raquel GonzalezdeVega, David Clases, Philip A. Doble, Christopher A. McDevit
    corecore