26 research outputs found

    Decoupling of internal and external workload during a marathon: An analysis of durability in 82,303 recreational runner

    Get PDF
    © 2022 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Aim: This study characterised the decoupling of internal-to-external workload in marathon running and investigated whether decoupling magnitude and onset could improve predictions of marathon performance. Methods: The decoupling of internal-to-external workload was calculated in 82,303 marathon runners (13,125 female). Internal workload was determined as a percentage of maximum heart rate, and external workload as speed relative to estimated critical speed (CS). Decoupling magnitude (i.e., decoupling in the 35–40 km segment relative to the 5–10 km segment) was classified as low (< 1.1), moderate (≥ 1.1 but < 1.2) or high (≥ 1.2). Decoupling onset was calculated when decoupling exceeded 1.025. Results: The overall internal-to-external workload decoupling experienced was 1.16 ± 0.22, first detected 25.2 ± 9.9 km into marathon running. The low decoupling group (34.5% of runners) completed the marathon at a faster relative speed (88 ± 6% CS), had better marathon performance (217.3 ± 33.1 min), and first experienced decoupling later in the marathon (33.4 ± 9.0 km) compared to those in the moderate (32.7% of runners, 86 ± 6% CS, 224.9 ± 31.7 min, and 22.6 ± 7.7 km), and high decoupling groups (32.8% runners, 82 ± 7% CS, 238.5 ± 30.7 min, and 19.1 ± 6.8 km; all p < 0.01). Compared to females, males’ decoupling magnitude was greater (1.17 ± 0.22 vs. 1.12 ± 0.16; p < 0.01) and occurred earlier (25.0 ± 9.8 vs. 26.3 ± 10.6 km; p < 0.01). Marathon performance was associated with the magnitude and onset of decoupling, and when included in marathon performance models utilising CS and the curvature constant, prediction error was reduced from 6.45 to 5.16%. Conclusion: Durability characteristics, assessed as internal-to-external workload ratio, show considerable inter-individual variability, and both its magnitude and onset are associated with marathon performance.Peer reviewe

    The relationship between the moderate–heavy boundary and critical speed in running

    Get PDF
    Purpose: Training characteristics such as duration, frequency, and intensity can be manipulated to optimize endurance performance, with an enduring interest in the role of training-intensity distribution to enhance training adaptations. Training intensity is typically separated into 3 zones, which align with the moderate-, heavy-, and severe-intensity domains. While estimates of the heavy- and severe-intensity boundary, that is, the critical speed (CS), can be derived from habitual training, determining the moderate–heavy boundary or first threshold (T1) requires testing, which can be costly and time-consuming. Therefore, the aim of this review was to examine the percentage at which T1 occurs relative to CS. Results: A systematic literature search yielded 26 studies with 527 participants, grouped by mean CS into low (11.5 km·h−1; 95% CI, 11.2–11.8), medium (13.4 km·h−1; 95% CI, 11.2–11.8), and high (16.0 km·h−1; 95% CI, 15.7–16.3) groups. Across all studies, T1 occurred at 82.3% of CS (95% CI, 81.1–83.6). In the medium- and high-CS groups, T1 occurred at a higher fraction of CS (83.2% CS, 95% CI, 81.3–85.1, and 84.2% CS, 95% CI, 82.3–86.1, respectively) relative to the low-CS group (80.6% CS, 95% CI, 78.0–83.2). Conclusions: The study highlights some uncertainty in the fraction of T1 relative to CS, influenced by inconsistent approaches in determining both boundaries. However, our findings serve as a foundation for remote analysis and prescription of exercise intensity, although testing is recommended for more precise applications

    A left-handed simplicial action for euclidean general relativity

    Get PDF
    An action for simplicial euclidean general relativity involving only left-handed fields is presented. The simplicial theory is shown to converge to continuum general relativity in the Plebanski formulation as the simplicial complex is refined. This contrasts with the Regge model for which Miller and Brewin have shown that the full field equations are much more restrictive than Einstein's in the continuum limit. The action and field equations of the proposed model are also significantly simpler then those of the Regge model when written directly in terms of their fundamental variables. An entirely analogous hypercubic lattice theory, which approximates Plebanski's form of general relativity is also presented.Comment: Version 3. Adds current home address + slight corrections to references of version 2. Version 2 = substantially clarified form of version 1. 29 pages, 4 figures, Latex, uses psfig.sty to insert postscript figures. psfig.sty included in mailing, also available from this archiv

    The treasury of natural history or a popular dictionary of zoology

    No full text

    The scientific and literary treasury : a new and popular encyclopedia of the belles lettres /

    No full text
    Advertisements: 6 unnumbered and 32 pages at end.Engraved frontispiece by S. Bull.Text printed in double columns.Added engraved title page.Mode of access: Internet.Library's copy inscribed on front pastedown
    corecore