9 research outputs found

    Head-to-head comparison of two angiography-derived fractional flow reserve techniques in patients with high-risk acute coronary syndrome: A multicenter prospective study

    Get PDF
    BACKGROUND FFRangio and QFR are angiography-based technologies that have been validated in patients with stable coronary artery disease. No head-to-head comparison to invasive fractional flow reserve (FFR) has been reported to date in patients with acute coronary syndromes (ACS). METHODS This study is a subset of a larger prospective multicenter, single-arm study that involved patients diagnosed with high-risk ACS in whom 30-70% stenosis was evaluated by FFR. FFRangio and QFR - both calculated offline by 2 different and blinded operators - were calculated and compared to FFR. The two co-primary endpoints were the comparison of the Pearson correlation coefficient between FFRangio and QFR with FFR and the comparison of their inter-observer variability. RESULTS Among 134 high-risk ACS screened patients, 59 patients with 84 vessels underwent FFR measurements and were included in this study. The mean FFR value was 0.82 ± 0.40 with 32 (38%) being ≤0.80. The mean FFRangio was 0.82 ± 0.20 and the mean QFR was 0.82 ± 0.30, with 27 (32%) and 25 (29%) being ≤0.80, respectively. The Pearson correlation coefficient was significantly better for FFRangio compared to QFR, with R values of 0.76 and 0.61, respectively (p = 0.01). The inter-observer agreement was also significantly better for FFRangio compared to QFR (0.86 vs 0.79, p < 0.05). FFRangio had 91% sensitivity, 100% specificity, and 96.8% accuracy, while QFR exhibited 86.4% sensitivity, 98.4% specificity, and 93.7% accuracy. CONCLUSION In patients with high-risk ACS, FFRangio and QFR demonstrated excellent diagnostic performance. FFRangio seems to have better correlation to invasive FFR compared to QFR but further larger validation studies are required

    Arterial Wave Reflection and Aortic Valve Stenosis: Diagnostic Challenges and Prognostic Significance

    Get PDF
    IntroductionArterial wave reflection is an important component of the left ventricular afterload, affecting both pressure and flow to the aorta. The aim of the present study was to evaluate the impact of wave reflection on transvalvular pressure gradients (TPG), a key parameter for the evaluation of aortic valve stenosis (AS), as well as its prognostic significance in patients with AS undergoing a transcatheter aortic valve replacement (TAVR).Materials and MethodsThe study population consisted of 351 patients with AS (mean age 84 ± 6 years, 43% males) who underwent a complete hemodynamic evaluation before the TAVR. The baseline assessment included right and left heart catheterization, transthoracic echocardiography, and a thorough evaluation of the left ventricular afterload by means of wave separation analysis. The cohort was divided into quartiles according to the transit time of the backward pressure wave (BWTT). Primary endpoint was all-cause mortality at 1 year.ResultsEarly arrival of the backward pressure wave was related to lower cardiac output (Q1: 3.7 ± 0.9 lt/min vs Q4: 4.4 ± 1.0 lt/min, p &lt; 0.001) and higher aortic systolic blood pressure (Q1: 132 ± 26 mmHg vs Q4: 117 ± 26 mmHg, p &lt; 0.001). TPG was significantly related to the BWTT, patients in the arrival group exhibiting the lowest TPG (mean TPG, Q1: 37.6 ± 12.7 mmHg vs Q4: 44.8 ± 14.7 mmHg, p = 0.005) for the same aortic valve area (AVA) (Q1: 0.58 ± 0.35 cm2 vs 0.61 ± 0.22 cm2, p = 0.303). In multivariate analysis, BWTT remained an independent determinant of mean TPG (beta 0.3, p = 0.002). Moreover, the prevalence of low-flow, low-gradient AS with preserved ejection fraction was higher in patients with early arterial reflection arrival (Q1: 33.3% vs Q4: 14.9%, p = 0.033). Finally, patients with early arrival of the reflected wave (Q1) exhibited higher all-cause mortality at 1 year after the TAVR (unadjusted HR: 2.33, 95% CI: 1.17–4.65, p = 0.016).ConclusionEarly reflected wave arrival to the aortic root is associated with poor prognosis and significant aortic hemodynamic alterations in patients undergoing a TAVR for AS. This is related to a significant decrease in TPG for a given AVA, leading to a possible underestimation of the AS severity

    Volume-Outcome Relationship in Surgical and Cardiac Transcatheter Interventions with a Focus on Transcatheter Aortic Valve Implantation

    No full text
    &ldquo;Practice makes perfect&rdquo; is an old saying that can be true for complex interventions. There is a strong and persistent relationship between high volume and better outcomes with more than 300 studies being reported on the subject. The more complex the procedure, the greater the volume-outcome relationship is. Failure to rescue was shown to be one of the factors explaining higher mortality rates post complex surgery. High-volume centers provide a better safety net, thanks to the structure and better protocols, and low-volume operators have better results at high-volume centers than at low-volume centers. Finally, effort should be made to regroup complex procedures in high-volume centers, but without compromising patient access to the procedures. Adaptation to local and geographic constraints is important

    Where are we now with TAV-in-TAV?

    No full text

    Prognostic Implications of the Novel Pulmonary Hypertension Definition in Patients with Aortic Stenosis after Transcatheter Valve Replacement

    No full text
    Introduction: Pulmonary hypertension (PH), traditionally defined as a mean pulmonary artery pressure (PAP) ≥ 25 mmHg, is associated with poor outcomes in patients undergoing a transcatheter aortic valve replacement (TAVR) for severe aortic stenosis (AS). Recently, a novel definition for PH has been proposed, placing the cut-off value of mean PAP at 20 mmHg, and introducing pulmonary vascular resistance as an exclusive indicator for the pre-capillary involvement. In light of the novel criteria, whether PH still preserves its prognostic significance remains unknown. Methods: The study population consisted of 380 patients with AS, who underwent a right heart catheterization before TAVR. The cohort was divided according to the presence of PH (n = 174, 45.7%) or not. Patients with PH were further divided into the following groups: (1) Pre-capillary PH ((Pre-capPH), n = 46, 12.1%); (2) Isolated post-capillary PH ((IpcPH), n = 78, 20.5%); (3) Combined pre and post-capillary PH ((CpcPH), n = 82, 21.6%). The primary endpoint was all-cause mortality at 1 year. Results: A total of 246 patients (64.7%) exhibited mean PAP &gt; 20 mmHg. Overall, the presence of PH was associated with higher 1-year mortality rates (hazard ratio (HR) 2.8, 95% CI: 1.4–5.8, p = 0.004). Compared to patients with no PH, Pre-capPH and CpcPH (but not IpcPH) were related to higher 1-year mortality (HR 2.7, 95% CI: 1.0–7.2, p = 0.041 and HR 3.9, 95% CI: 1.8–8.5, p = 0.001, respectively). This remained significant even after the adjustment for baseline comorbidities. Conclusions: Pre-interventional PH according to the novel hemodynamic criteria, is linked with poor outcomes in patients undergoing TAVR for severe AS. However, this is mainly driven by patients with mean PAP ≥ 25 mmHg. Patients with a pre-capillary PH component as defined by increased PVR present an even worse prognosis as compared to patients with isolated post-capillary or no PH who present comparable 1-year mortality rates.</p
    corecore