4 research outputs found

    Coral restoration can drive rapid reef carbonate budget recovery (article)

    Get PDF
    This is the final version. Available on open access from Cell Press via the DOI in this recordMaterials availability: This study did not generate new unique reagents.Data and code availability: All data and original code supporting the findings in this paper are publicly available on GitHub (https://github.com/InesLange/reef-restoration-carbonate-budgets). Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.The dataset associated with this article is available in ORE at: https://doi.org/10.24378/exe.5065Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and marine ecosystems.1,2 Considering the unprecedented loss of coral cover and associated reef ecosystem services, active coral restoration is gaining traction in local management strategies and has recently seen major increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly understood.3,4 Carbonate budgets, defined as the balance between calcium carbonate production and erosion, influence a reef’s ability to provide important geo-ecological functions including structural complexity, reef framework production, and vertical accretion.5 Here we present the first assessment of reef carbonate budget trajectories at restoration sites. The study was conducted at one of the world’s largest coral restoration programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate degraded rubble fields.6 Within 4 years, fast coral growth supports a rapid recovery of coral cover (from 17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from 7.2 ± 1.6 to 20.7 ± 2.2 kg m−2 yr−1). Four years after coral transplantation, net carbonate budgets have tripled and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kg m−2 yr−1, respectively). However, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the preferential use of branching corals for transplantation. While longer observation times are necessary to observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we demonstrate the potential of large-scale, well-managed coral restoration projects to recover important ecosystem functions within only 4 years.1851 Royal CommissionFisheries Society of the British IslesBertarelli Program in Marine Scienc

    Coral restoration can drive rapid reef carbonate budget recovery (dataset)

    No full text
    This is the raw data used for the Lange et al. (2024) article "Coral restoration can drive rapid reef carbonate budget recovery" published in Current Biology.The article associated with this dataset is available in ORE at: http://hdl.handle.net/10871/135523Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and marine ecosystems. Considering the unprecedented loss of coral cover and associated reef ecosystem services, active coral restoration is gaining traction in local management strategies and has recently seen major increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly understood. Carbonate budgets, defined as the balance between calcium carbonate production and erosion, influence a reef’s ability to provide important geo-ecological functions including structural complexity, reef framework production, and vertical accretion. Here we present the first assessment of reef carbonate budget trajectories at restoration sites. The study was conducted at one of the world’s largest coral restoration programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate degraded rubble fields. Within 4 years, fast coral growth supports a rapid recovery of coral cover (from 17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from 7.2 ± 1.6 to 20.7 ± 2.2 kg m−2 yr−1). Four years after coral transplantation, net carbonate budgets have tripled and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kg m−2 yr−1, respectively). However, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the preferential use of branching corals for transplantation. While longer observation times are necessary to observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we demonstrate the potential of large-scale, well-managed coral restoration projects to recover important ecosystem functions within only 4 years.Fondation Bertarelli1851 Royal CommissionFisheries Society of the British IslesBertarelli Program in Marine Scienc

    The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed by Linear Scaling Relations

    No full text
    corecore