51 research outputs found

    Identification of an active RNAi pathway in Candida albicans

    Get PDF
    RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast , have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in , a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in , highlighting the importance of using multiple reference strains when studying this dangerous pathogen

    Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom

    Get PDF
    International audienceEukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Crypto-coccus yeast species by genome-wide mapping of translation and of mRNA 5 and 3 ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Crypto-coccus mRNAs encode predicted dual-localized proteins , including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi

    A CO2 sensing module modulates ÎČ-1,3-glucan exposure in Candida albicans.

    Get PDF
    This work was funded by a program grant to A.J.P.B., N.A.R.G., L.P.E., and M.G.N. from the UK Medical Research Council [www.mrc.ac.uk: MR/M026663/1, MR/M026663/2]. The work was also supported by the Medical Research Council Centre for Medical Mycology [MR/N006364/1, MR/N006364/2], by a grant to C.d.E. from the European Commission [FunHoMic: H2020-MSCA-ITN-2018–812969], and by the Wellcome Trust via Investigator, Collaborative, Equipment, Strategic and Biomedical Resource awards [www.wellcome.ac.uk: 075470, 086827, 093378, 097377, 099197, 101873, 102705, 200208, 217163, 224323]. Work in the d’Enfert laboratory was supported by grants from the Agence Nationale de Recherche (ANR-10-LABX-62-IBEID) and the Swiss National Science Foundation (Sinergia CRSII5_173863/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    ETUDES STRUCTURALES PAR RMN ET DYNAMIQUE MOLECULAIRE D'OLIGONUCLEOTIDES CONTENANT UNE BASE ENDOMMAGEE PAR LES RAYONNEMENTS IONISANTS

    No full text
    LA CONNAISSANCE PRECISE DE LA STRUCTURE D'UN ADN MODIFIE, EN PARTICULIER AU NIVEAU DU SITE DE LESION, PEUT FOURNIR DES INFORMATIONS TRES UTILES POUR LA COMPREHENSION DES MECANISMES DE MUTATIONS ET DE REPARATIONS DE CES LESIONS. DANS CE BUT, NOUS AVONS DETERMINE PAR RMN ET CALCULS DE DYNAMIQUE MOLECULAIRE, LA STRUCTURE TRIDIMENSIONNELLE D'OLIGONUCLEOTIDES CONTENANT LA LESION FORMAMIDE QUI EST UN PRODUIT DE RADIOLYSE DE LA THYMINE. CETTE LESION QUI A PERDU UNE GRANDE PARTIE DE L'INFORMATION CODANTE INITIALE PEUT ENTRAINER UN BLOCAGE DE L'ADN-POLYMERASE OU ETRE A L'ORIGINE DE MUTATIONS. DANS UN PREMIER TEMPS, NOUS AVONS ETUDIE UN OLIGONUCLEOTIDE CONTENANT UN RESIDU FORMAMIDE SURNUMERAIRE. CETTE ETUDE A MIS EN EVIDENCE LA PRESENCE DES DEUX ISOMERES CIS ET TRANS DE LA FORMAMIDE EN SOLUTION. LA FORMAMIDE SURNUMERAIRE EST A L'EXTERIEUR DE L'HELICE ET LE DUPLEX MAINTIENT GLOBALEMENT UNE STRUCTURE DE TYPE B. DANS LA DEUXIEME PARTIE DE CE TRAVAIL, NOUS AVONS EXPOSE LES RESULTATS CONCERNANT LA STRUCTURE D'OLIGONUCLEOTIDES COMPORTANT UNE GUANINE OU UNE ADENINE OPPOSEE AU RESIDU FORMAMIDE. EN CE QUI CONCERNE LE PREMIER OLIGONUCLEOTIDE, NOUS AVONS MONTRE QUE LA FORMAMIDE EST APPARIEE AVEC LA GUANINE OPPOSEE. LA STRUCTURE GLOBALE DU DUPLEX NE DEVIE QUASIMENT PAS D'UNE HELICE DE TYPE B. EN CE QUI CONCERNE LE DEUXIEME OLIGONUCLEOTIDE, NOUS AVONS DETERMINE QUE LA FORMAMIDE POUVAIT ADOPTER DEUX POSITIONS, INTRA-HELICOIDALE ET EXTRA-HELICOIDALE. L'ADENINE OPPOSEE A LA LESION EST TOUJOURS A L'INTERIEUR DU DUPLEX. CES RESULTATS DEMONTRENT QUE LA STRUCTURE D'OLIGONUCLEOTIDES CONTENANT LE RESIDU FORMAMIDE EST INFLUENCE PAR LA NATURE DE LA BASE LUI FAISANT FACE ET PAR LA SEQUENCE ENVIRONNANTE.PARIS-BIUSJ-ThĂšses (751052125) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Cryptococcus neoformans transcriptome and translatome analysis 2018

    No full text
    ATG Context and translation analysis in Cryptococcus neoformansEdward Wallace, & maufrais. (2020, January 26). ewallace/CryptoTranscriptome2018: Paper in press at Nucleic Acids Research (Version v1.0-paper). Zenodo. http://doi.org/10.5281/zenodo.362787

    Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans

    No full text
    International audienceMost of our knowledge relating to molecular mechanisms of human fungal pathogenesis in Candida albicans relies on reverse genetics approaches, requiring strain engineering. DNA-mediated transformation of C. albicans has been described as highly mutagenic, potentially accentuated by the organism's genome plasticity, including the acquisition of genomic rearrangements, notably upon exposure to stress. The advent of CRISPR-Cas9 has vastly accelerated the process of genetically modifying strains, especially in diploid (such as C. albicans) and polyploid organisms. The effects of unleashing this nuclease within the genome of C. albicans are unknown, although several studies in other organisms report Cas9-associated toxicity and off-target DNA breaks. Upon the construction of a C. albicans strain collection, we took the opportunity to compare strains which were constructed using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation strategies, by quantifying and describing transformation-induced loss-of-heterozygosity and hyperploidy events. Our analysis of 57 strains highlights the mutagenic effects of transformation in C. albicans, regardless of the transformation protocol, but also underscores interesting differences in terms of genomic changes between strains obtained using different transformation protocols. Indeed, although strains constructed using the CRISPR-Cas9-free transformation method display numerous concomitant genomic changes randomly distributed throughout their genomes, the use of CRISPR-Cas9 leads to a reduced overall number of genome changes, particularly hyperploidies. Overall, in addition to facilitating strain construction by reducing the number of transformation steps, the CRISPR-Cas9-dependent transformation strategy in C. albicans appears to limit transformation-associated genome changes.IMPORTANCE Genome editing is essential to nearly all research studies aimed at gaining insight into the molecular mechanisms underlying various biological processes, including those in the opportunistic pathogen Candida albicans The adaptation of the CRISPR-Cas9 system greatly facilitates genome engineering in many organisms. However, our understanding of the effects of CRISPR-Cas9 technology on the biology of C. albicans is limited. In this study, we sought to compare the extents of transformation-induced genomic changes within strains engineered using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation methods. CRISPR-Cas9-dependent transformation allows one to simultaneously target both homologs and, importantly, appears less mutagenic in C. albicans, since strains engineered using CRISPR-Cas9 display an overall decrease in concomitant genomic changes

    Factors that influence bidirectional long-tract homozygosis due to double-strand break repair in Candida albicans

    No full text
    International audienceGenomic rearrangements have been associated with the acquisition of adaptive phenotypes, allowing organisms to efficiently generate new favorable genetic combinations. The diploid genome of Candida albicans is highly plastic, displaying numerous genomic rearrangements that are often the by-product of the repair of DNA breaks. For example, DNA double-strand breaks (DSB) repair using homologous-recombination pathways are a major source of loss-of-heterozygosity (LOH), observed ubiquitously in both clinical and laboratory strains of C. albicans. Mechanisms such as break-induced replication (BIR) or mitotic crossover (MCO) can result in long tracts of LOH, spanning hundreds of kilobases until the telomere. Analysis of I-SceI-induced BIR/MCO tracts in C. albicans revealed that the homozygosis tracts can ascend several kilobases toward the centromere, displaying homozygosis from the break site toward the centromere. We sought to investigate the molecular mechanisms that could contribute to this phenotype by characterizing a series of C. albicans DNA repair mutants, including pol32-/-, msh2-/-, mph1-/-, and mus81-/-. The impact of deleting these genes on genome stability revealed functional differences between Saccharomyces cerevisiae (a model DNA repair organism) and C. albicans. In addition, we demonstrated that ascending LOH tracts toward the centromere are associated with intrinsic features of BIR and potentially involve the mismatch repair pathway which acts upon natural heterozygous positions. Overall, this mechanistic approach to study LOH deepens our limited characterization of DNA repair pathways in C. albicans and brings forth the notion that centromere proximal alleles from DNA break sites are not guarded from undergoing LOH

    Aneuploidy and gene dosage regulate filamentation and host colonization by Candida albicans

    No full text
    International audienceAneuploidy is a frequent occurrence in fungal species where it can alter gene expression and promote adaptation to a variety of environmental cues. Multiple forms of aneuploidy have been observed in the opportunistic fungal pathogen Candida albicans, which is a common component of the human gut mycobiome but can escape this niche and cause life-threatening systemic disease. Using a barcode sequencing (Bar-seq) approach, we evaluated a set of diploid C. albicans strains and found that a strain carrying a third copy of chromosome (Chr) 7 was associated with increased fitness during both gastrointestinal (GI) colonization and systemic infection. Our analysis revealed that the presence of a Chr 7 trisomy resulted in decreased filamentation, both in vitro and during GI colonization, relative to isogenic euploid controls. A target gene approach demonstrated that NRG1 , encoding a negative regulator of filamentation located on Chr 7, contributes to increased fitness of the aneuploid strain due to inhibition of filamentation in a gene dosage–dependent fashion. Together, these experiments establish how aneuploidy enables the reversible adaptation of C. albicans to its host via gene dosage–dependent regulation of morphology

    Within-host genomic diversity of candida albicans in healthy carriers

    No full text
    International audienceGenomic variations in Candida albicans, a major fungal pathogen of humans, have been observed upon exposure of this yeast to different stresses and experimental infections, possibly contributing to subsequent adaptation to these stress conditions. Yet, little is known about the extent of genomic diversity that is associated with commensalism, the predominant lifestyle of C. albicans in humans. In this study, we investigated the genetic diversity of C. albicans oral isolates recovered from healthy individuals, using multilocus sequencing typing (MLST) and whole genome sequencing. While MLST revealed occasional differences between isolates collected from a single individual, genome sequencing showed that they differed by numerous single nucleotide polymorphisms, mostly resulting from short-range loss-of-heterozygosity events. These differences were shown to have occurred upon human carriage of C. albicans rather than subsequent in vitro manipulation of the isolates. Thus, C. albicans intra-sample diversity appears common in healthy individuals, higher than that observed using MLST. We propose that diversifying lineages coexist in a single human individual, and this diversity can enable rapid adaptation under stress exposure. These results are crucial for the interpretation of longitudinal studies evaluating the evolution of the C. albicans genome
    • 

    corecore