210 research outputs found

    Introduction: Symposium on the Progress in Diabetic Nephropathy

    Get PDF

    Studies of renal autoregulation in pancreatectomized and streptozotocin diabetic rats

    Get PDF
    Studies of renal autoregulation in pancreatectomized and streptozotocin diabetic rats. We studied renal autoregulation in pancreatectomized Munich-Wistar diabetic rats and in their sham-operated controls. In a second experiment we studied renal autoregulation in untreated and insulin treated streptozotocin diabetic Munich-Wistar rats and their nondiabetic controls. In the first experiment the diabetic rats had higher baseline renal blood flows (RBF). There was a fall in renal vascular resistance (RVR) and sustained RBF in both diabetic and control rats as renal perfusion pressures (RPP) was reduced from 130 and 110mm Hg. As RPP was reduced from 110 and 80mm Hg, there was no significant change in RVR in control rats and RBF began to fall. Below RPP of 80mm Hg RVR rose and RBF fell sharply in these rats. In contrast, there was a progressive fall in RVR as RPP was lowered to 60mm Hg in the diabetic rats and, thus, RBF was much better sustained in these animals. In the second experiment the plasma glucose level was 502 ± 52 mg/dl (X ± SD) in the untreated diabetic rats and only modestly reduced to 411 ± 49 mg/dl in the insulin treated animals. Untreated streptozotocin diabetic rats had moderately reduced and insulin-treated diabetic rats had mildly reduced baseline RVR and RBF. However, in these animals as in the pancreatectomized rats the increases in RVR noted in control rats at subautoregulatory RPPs were not seen. Thus, regardless of whether baseline RBFs were increased or decreased, diabetic rats sustained RBF at markedly reduced RPPs far more efficiently than did nondiabetic rats. The pathogenesis of these abnormalities in diabetic rats was not learned in these studies. However, it is likely that further study of autoregulation in diabetic rats could uncover factors influencing renal vascular tone which would be helpful in understanding the renal hemodynamic perturbations which may attend this experimental model

    Glomerular distribution of type IV collagen in diabetes by high resolution quantitative immunochemistry

    Get PDF
    Glomerular distribution of type IV collagen in diabetes by high resolution quantitative immunochemistry. We examined type IV collagen distribution and density in human diabetic kidneys by quantitative immunogold electron microscopy. We studied normal kidney transplant donors and “slow-track” and “fast-track” insulin dependent diabetic (IDDM) patients. The “slow-track” patients had IDDM for ≥ 20 years and mesangial volume fraction (VvMes/glom) of ≤ 0.32. The “fast-track” patients had IDDM for ≤ 20 years and VvMes/glom ≥ 0.37. Renal biopsies were embedded in Lowicryl, reacted with polyclonal anti-type IV collagen (in the distribution of the classical α1(IV) and α2(IV) collagen chains) and monoclonal anti-α4(IV) collagen chain antibody followed by gold conjugated secondary antibody. We found, by morphometric techniques, a decrease in the immunogold densities of anti-type IV collagen in the subendothelial zone of the GBM in the “fast-track” IDDM patients. There was a trend towards a decrease in mesangial matrix (MM) particle density in the “fast-track” (P = 0.07) but not in the “slow-track” patients. However, because of the marked increase in MM in the “fast-track” patients, the per glomerulus estimated quantity of these antigens in MM was increased. In contrast, the density of α4(IV) collagen chain was increased in the epithelial zone of the GBM in the “fast-track” IDDM patients. It is not known whether these changes in glomerular type IV collagen represent markers of advanced diabetic lesions or whether these changes might be detected earlier in diabetic patients destined for the later development of serious lesions

    A New Panel-Estimated GFR, Including beta(2)-Microglobulin and beta-Trace Protein and Not Including Race, Developed in a Diverse Population

    Get PDF
    RATIONALE AND OBJECTIVE: GFR estimation based on creatinine and cystatin C (eGFR(cr-cys)) is more accurate than eGFR based on either creatinine or cystatin C alone (eGFR(cr) or eGFR(cys)), but the inclusion of creatinine in eGFR(cr-cys) requires specification of a person’s race. Beta-2-microglobulin (B2M) and beta-trace protein (BTP) are alternative filtration markers that appear to be less influenced by race than creatinine. STUDY DESIGN: Study of diagnostic test accuracy. SETTING AND PARTICIPANTS: Development in pooled population of seven studies with 5017 participants with and without chronic kidney disease. External validation in a pooled population of seven other studies with 2245 participants. TESTS COMPARED: Panel eGFR using B2M and BTP in addition to cystatin C (three-marker panel) or creatinine and cystatin C (four-marker panel) with and without age and sex or race. OUTCOMES: GFR measured as the urinary clearance of iothalamate, plasma clearance of iohexol, or plasma clearance of Cr-EDTA RESULTS: Mean measured GFR was 58.1 and 83.2 ml/min/1.73m(2) and the proportion of blacks was 38.6% and 24.0%, in the development and validation populations, respectively. In development, addition of age and sex improved the performance of all equations compared to equations without age and sex, but addition of race did not further improve the performance. In validation, the four-marker panels were more accurate than the three-marker panels (p<0.001). The three-marker panel without race was more accurate than eGFR(cys) [1- P(30) of 15.6 vs 17.4% (p=0.014)], and the four-marker panel without race was as accurate as eGFR(cr-cys) [1- P(30) of 8.6 vs 9.4% (p=0.17)]. Results were generally consistent across subgroups. LIMITATIONS: No representation of participants with severe comorbid illness and from geographic areas outside of North America and Europe. CONCLUSIONS: The four-marker panel eGFR is as accurate as eGFR(cr-cys), without requiring specification of race. A more accurate race-free eGFR could be an important advance

    Linagliptin Improves Insulin Sensitivity and Hepatic Steatosis in Diet-Induced Obesity

    Get PDF
    Linagliptin (tradjenta™) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3–4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67–89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (–16.5% to –20.3%; P<0.01) or 30 mg/kg/day (–14.5% to –26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic–hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity
    • …
    corecore